Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
꧁❥Hikari-Chanツ꧂

cho phương trình ( m^2-m)x +m^2 -1=0 (m là tham số)  a) giải pt khi m=2  b) tìm m để pt có nghiệm x=-1   c) tìm m để pt có nghiệm , vô nghiệm, vô số nghiệm

Nguyễn Việt Lâm
5 tháng 7 2021 lúc 18:36

a.

Khi \(m=2\) pt trở thành:

\(2x+3=0\Rightarrow x=-\dfrac{3}{2}\)

b.

Để pt có nghiệm \(x=-1\)

\(\Rightarrow\left(m^2-m\right).\left(-1\right)+m^2-1=0\)

\(\Leftrightarrow-m^2+m+m^2-1=0\)

\(\Leftrightarrow m-1=0\)

\(\Leftrightarrow m=1\)

c.

Pt tương đương:

\(\left(m^2-m\right)x=-\left(m^2-1\right)\)

\(\Leftrightarrow m\left(m-1\right)x=-\left(m-1\right)\left(m+1\right)\)

Pt vô nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)\ne0\end{matrix}\right.\) \(\Leftrightarrow m=0\)

\(\Rightarrow\) pt có nghiệm khi \(m\ne0\)

Pt có vô số nghiệm khi:

\(\left\{{}\begin{matrix}m\left(m-1\right)=0\\-\left(m-1\right)\left(m+1\right)=0\end{matrix}\right.\) \(\Leftrightarrow m=1\)

Akai Haruma
5 tháng 7 2021 lúc 18:40

Lời giải:

a. Khi $m=2$ thì pt trở thành:

$2x+3=0\Leftrightarrow x=-\frac{3}{2}$

b. Để pt có nghiệm $x=-1$ thì:

$(m^2-m).(-1)+m^2-1=0$

$\Leftrightarrow m-1=0\Leftrightarrow m=1$

c. 

PT $\Leftrightarrow (m^2-m)x=1-m^2$

Để pt vô nghiệm thì: \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m(m-1)=0\\ (1-m)(1+m)\neq 0\end{matrix}\right.\) 

\(\Leftrightarrow m=0\)

PT có vô số nghiệm khi \(\left\{\begin{matrix} m^2-m=0\\ 1-m^2= 0\end{matrix}\right.\Leftrightarrow m=1\)

Để PT có nghiệm thì: $m\neq 0$

 


Các câu hỏi tương tự
꧁❥Hikari-Chanツ꧂
Xem chi tiết
Phương Uyên
Xem chi tiết
Hồng Phượng Thái Thị
Xem chi tiết
Phan Phuong Thao
Xem chi tiết
chuche
Xem chi tiết
Đỗ Tuệ Lâm
Xem chi tiết
Cố Tử Thần
Xem chi tiết
Clowns
Xem chi tiết
Linh Khánh
Xem chi tiết