Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Mai Anh
Xem chi tiết
Đỗ Hương Giang
24 tháng 9 2016 lúc 17:34

a, A= 1+2+2^2+2^3 +...+ 2^99

2.A = 2+2^2+.....+2^100

Ta có :

2.A -A = 2^100 - 1

A = 2^100 - 1

b, B = 3^0+3^1+3^2+...+3^49

3.B= 3+3^2+3^3+....+3^50

Ta có :

3.B-B = 3^50-1

2.B= 3^50-1

B = 3^50-1 phần 2 ( phân số nhé )

Tớ không biết viết P/S thông cảm nhé, mình mới học thêm phần này về , nên chưa vững lắm , còn sai... Bạn sửa hộ mình nhé

Quách Quỳnh Bảo Ngọc
Xem chi tiết
vô tâm nhók
1 tháng 5 2017 lúc 21:22

a) A =1+3+32+33+...+3100

   3A = 3 + 32+33+...+3101

   3A-A=( 3 + 32+33+...+3101)-(1+3+32+33+...+3100)

    2A = 3101-1

    A = \(\frac{3^{101}-1}{2}\)

    Thùy An làm sai rùi

Thuỳ An
2 tháng 8 2016 lúc 15:54

a) A=1+3+3^2+...+3^100

3A=3+3^2+....+3^101

3A-A=1+3^101

A=(1+3^101)/2

Hoàng hôn  ( Cool Team )
2 tháng 10 2019 lúc 21:36

  a) A=1+3+32+...+3100

    3A=    3+32+...+3100+3101

3A-A=3101-1

   2A=3101-1

     A=(3101-1):2

Fianna TV
Xem chi tiết
I don
27 tháng 9 2019 lúc 21:28

A = 2100 - 299 + 298 - 297 +...+ 22 - 2

=> 2A = 2101 - 2100+299 - 298+...+23-22

=> 2A+A= 2101 -2

=> \(A=\frac{2^{101}-2}{3}\)

phần B bn lm tương tự nha!
 

Trịnh Lan Phương
Xem chi tiết
Nguyễn Ngọc Minh Hoài
25 tháng 10 2017 lúc 15:37

A < B

Tk nha !

Thanks !

Trịnh Lan Phương
25 tháng 10 2017 lúc 19:56

Giải ra nhé bn

Nguyễn Thị Ngọc Linh
Xem chi tiết
do thu ha
5 tháng 10 2016 lúc 14:30

S=\(3^{50}-3\) nha bn

k mk nha

mk k lại cho!

do thu ha
5 tháng 10 2016 lúc 14:32

thông cảm nha Tổng 

Q thì mk có chút hơi

...ờ...ờ!(^ - ^)

đào ngọc thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 8 2023 lúc 5:24

a: \(A=\left(\dfrac{1}{99}+1\right)+\left(\dfrac{2}{98}+1\right)+...+\left(\dfrac{98}{2}+1\right)+1\)

\(=\dfrac{100}{99}+\dfrac{100}{98}+...+\dfrac{100}{2}+\dfrac{100}{100}\)

\(=100\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)\)=100B

=>B/A=1/100

b: \(A=\left(\dfrac{1}{49}+1\right)+\left(\dfrac{2}{48}+1\right)+\left(\dfrac{3}{47}+1\right)+...+\left(\dfrac{48}{2}+1\right)+\left(1\right)\)

\(=\dfrac{50}{49}+\dfrac{50}{48}+....+\dfrac{50}{2}+\dfrac{50}{50}\)

\(=50\left(\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{50}\right)\)

\(B=\dfrac{2}{2}+\dfrac{2}{3}+\dfrac{2}{4}+...+\dfrac{2}{49}+\dfrac{2}{50}\)

\(=2\left(\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{49}+\dfrac{1}{50}\right)\)

=>A/B=25

Anh Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 1:10

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

Phan Ngọc Bảo Trân
Xem chi tiết
Lê Hoàng Thảo Nhi
Xem chi tiết
Akai Haruma
24 tháng 7 2018 lúc 17:41

Lời giải:

a) \(A=1+3+3^2+3^3+...+3^{100}\)

\(\Rightarrow 3A=3+3^2+3^3+...+3^{101}\)

Trừ theo vế:
\(\Rightarrow 3A-A=(3+3^2+3^3+..+3^{101})-(1+3+3^2+...+3^{100})\)

\(2A=3^{101}-1\Rightarrow A=\frac{3^{101}-1}{2}\)

b) \(B=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(\Rightarrow 2B=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

Cộng theo vế:

\(\Rightarrow B+2B=2^{201}-2\)

\(\Rightarrow B=\frac{2^{101}-2}{3}\)

Akai Haruma
24 tháng 7 2018 lúc 17:45

c) Ta có:

\(C=3^{100}-3^{99}+3^{98}-3^{97}+...+3^2-3+1\)

\(\Rightarrow 3C=3^{101}-3^{100}+3^{99}-3^{98}+...+3^3-3^2+3\)

Cộng theo vế:

\(C+3C=(3^{100}-3^{99}+3^{98}-....+3^2-3+1)+(3^{101}-3^{100}+3^{99}-....+3^3-3^2+3)\)

\(4C=3^{101}+1\Rightarrow C=\frac{3^{101}+1}{4}\)