Cho phân thức : \(A=\frac{x^4-2x^2+1}{x^3-3x-2}\)
tìm điều kiện của x để A có nghĩa.Cho phân thức A : \(\frac{x^4-2x^2+1}{x^3-3x-2}\)
1. Tìm điều kiện của x để A có nghĩa
2. Rút gọn A
3. Tính x để A<1
cho A =\(\frac{x^4+2x^2-3}{3x^3-x^2-3x+1}\)
a) tìm điều kiện của x để A có nghĩa
b) tìm điều kiện của x để A âm
a) Để A có nghĩa thì :
\(3x^3-x^2-3x+1\ne0\)
\(\Leftrightarrow x^2\left(3x-1\right)-\left(3x-1\right)\ne0\)
\(\Leftrightarrow\left(3x-1\right)\left(x^2-1\right)\ne0\)
\(\Leftrightarrow\left(3x-1\right)\left(x-1\right)\left(x+1\right)\ne0\)
\(\Leftrightarrow\hept{\begin{cases}x\ne\frac{1}{3}\\x\ne1\\x\ne-1\end{cases}}\)
ĐKXĐ : \(\hept{\begin{cases}x\ne\frac{1}{3}&x\ne\pm1&\end{cases}}\)
cho phân thức \(A=\frac{x^4-2x^2+1}{x^3-3x-2}\)
tìm điều kiện x để A có nghĩa
rút gọn A
tìm x để A <1
Cho phân thức: \(A=\frac{x^4-2x^2+1}{x^3-3x-2}\)
1. Tìm điều kiện của \(x\) để A có nghĩa.
2. Rút gọn A.
3. Tính x để A < 1.
1. Để A có nghĩa thì \(x^3-3x-2\ne0\)
\(\Rightarrow\left(x^3-x\right)-\left(2x-2\right)\ne0\)
\(\Rightarrow x\left(x^2-1\right)-2\left(x-1\right)\ne0\)
\(\Rightarrow x\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\ne0\)
\(\Rightarrow\left(x^2+x-2\right)\left(x-1\right)\ne0\)
\(\Rightarrow\left(x^2-1+x-1\right)\left(x-1\right)\ne0\)
\(\Rightarrow\left[\left(x+1\right)\left(x-1\right)+\left(x-1\right)\right]\left(x-1\right)\ne0\)
\(\Rightarrow\left(x-1\right)^2\left(x+2\right)\ne0\)
\(\Rightarrow x\ne1;x\ne-2\)
2. \(A=\frac{x^4-2x^2+1}{x^3-3x-2}=\frac{\left(x^2-1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left[\left(x-1\right)\left(x+1\right)\right]^2}{\left(x-1\right)^2\left(x+2\right)}\)
\(=\frac{\left(x-1\right)^2.\left(x+1\right)^2}{\left(x-1\right)^2\left(x+2\right)}=\frac{\left(x+1\right)^2}{x+2}\)
3/ Để A < 1 \(\Leftrightarrow\frac{\left(x+1\right)^2}{x+2}< 1\Leftrightarrow\left(x+1\right)^2< x+2\)
\(\Leftrightarrow x^2+2x+1< x+2\)
\(\Leftrightarrow x^2+x< 1\)
\(\Leftrightarrow x.\left(x+1\right)< 1\)
Vậy .....
1. A có nghĩa khi \(x^3-3x-2\ne0\)
\(\Leftrightarrow x^3+x^2-x^2-x-2x-2\ne0\)
\(\Leftrightarrow x^2\left(x+1\right)-x\left(x+1\right)-2\left(x+1\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2-x-2\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x-2x-2\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x-2\right)\ne0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow x-2\ne0\)(do \(\left(x+1\right)^2\ge0\)) \(\Leftrightarrow x\ne2\)
2. Ta có :
Tử = \(x^4-2x^2+1=x^4-x^3+x^3-x^2-x^2+x-x+1\)
=\(x^3\left(x-1\right)+x^2\left(x-1\right)-x\left(x-1\right)-\left(x-1\right)\)
=\(\left(x-1\right)\left(x^3+x^2-x-1\right)=\left(x-1\right)\left[x^2\left(x+1\right)-x\left(x+1\right)\right]\)
=\(\left(x-1\right)\left(x+1\right)\left(x^2-1\right)=\left(x-1\right)\left(x+1\right)\left(x-1\right)\left(x+1\right)\)
\(=\left(x+1\right)^2\left(x-1\right)^2\)
Vậy \(A=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)
3. \(A< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}< 1\Leftrightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Leftrightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)
\(\Leftrightarrow\frac{x^2-3x+3}{x-2}< 0\)ta có \(x^2-3x+3=x^2-2.\frac{3}{2}x+\frac{9}{4}+\frac{3}{4}=\left(x-\frac{3}{4}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\)(1) \(\Leftrightarrow x-2< 0\Leftrightarrow x< 2\)(Thỏa mãn)
Vậy x<2 thì A<1
Cho phân thức :
tìm điều kiện của x để A có nghĩa.Rút gọn A.Tính x để A < 1.
1.A=\(\frac{x^4-2x^2+1}{x^3-3x-2}\)
A có nghĩa \(\Leftrightarrow x^3-3x-2\ne0\Leftrightarrow\left(x+1\right)^2\left(x-2\right)\ne0\Leftrightarrow\hept{\begin{cases}x\ne-1\\x\ne2\end{cases}}\)
2 .A = \(\frac{x^4-2x^2+1}{x^3-3x-2}\)=\(\frac{\left(x^2-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x+1\right)^2\left(x-1\right)^2}{\left(x+1\right)^2\left(x-2\right)}=\frac{\left(x-1\right)^2}{x-2}\)
A<1\(\Rightarrow\frac{\left(x-1\right)^2}{x-2}-1< 0\Rightarrow\frac{x^2-2x+1-x+2}{x-2}< 0\)
\(\Rightarrow\frac{x^2-3x+3}{x-2}< 0\Rightarrow x-2< 0\)vì \(x^2-3x+3=\left(x-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)
Vậy x<2 thỏa mãn yêu cầu A<1
Cho biểu thức \(A=\frac{3x+2}{2x-2}+\frac{4x}{x^2-1}.\frac{x+1}{8}\)
Tìm điều kiện của x để biểu thức A có nghĩa.
Cho phân thức A=\(\frac{3x^3+6x^2}{x^3+2x^2+x+2}\)
a)Tìm điều kiện của x để giá trị của phân thức được xác định
b)Tìm giá trị của x để phân thức có giá trị bằng 2
a) ĐKXĐ: \(^{x^3+2x^2+x+2}\)khác 0
=> x^2(x+2)+(x+2) Khác 0
=> (x^2+1)(x+2) khác 0
=> x^2 khác -1(vô lý) và x khác -2
Vậy x khác -2 thì biểu thức A được xác định
b)\(A=\frac{3x^3+6x^2}{x^3+2x^2+x+2}=\frac{3x^2\left(x+2\right)}{x^2\left(x+2\right)+\left(x+2\right)}\)
\(=\frac{3x^2\left(x+2\right)}{\left(x^2+1\right)\left(x+2\right)}=\frac{3x^2}{x^2+1}\)
Để A=2 thì \(\frac{3x^2}{x+2}=2\)=>\(3x^2=2\left(x^2+1\right)=>3x^2=2x^2+2\)
\(=>x^2=2=>x=\sqrt{2}\)(Thỏa mãn điều kiện xác định)
cho phân thức \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}\)
a/ tìm điều kiện của x để giá trị của phân thức A được xác định
b/ tìm x để giá trị của phân thức bằng 3
a )\(\left[\begin{array}{nghiempt}x+1\ne0\\2x-3\ne0\end{array}\right.\)
\(ĐKXĐ:x\ne-1,x\ne\frac{3}{2}\)
b ) \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)
Để \(A=3\) thì :
\(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=-\frac{3}{2}\)
Chúc bạn học tốt
Cho biểu thức A = \(\left(\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right):\frac{x^2-4}{3x^2+6x}\)
a ) Tìm điều kiện của x để A có nghĩa . Rút gọn A
b ) Tìm x nguyên sao cho A nhận giá trị nguyên
( Mình đg cần gấp ạ . Tick trả đầy đủ )
a) A có nghĩa \(\Leftrightarrow\left(x+1\right)^2-3x\ne0\), \(x^3+1\ne0\),\(x+1\ne0\),\(3x^2+6x\ne0\) và \(x^2-4\ne0\)
+) \(\left(x+1\right)^2-3x\ne0\Leftrightarrow x^2+2x+1-3x\ne0\)
\(\Leftrightarrow x^2-x+1\ne0\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ne0\)(luôn đúng)
+) \(x^3+1\ne0\Leftrightarrow x^3\ne-1\Leftrightarrow x\ne-1\)
+) \(x+1\ne0\Leftrightarrow x\ne-1\)
+) \(3x^2+6x\ne0\Leftrightarrow3x\left(x+2\right)\ne0\)
\(\Leftrightarrow x\ne0;x\ne-2\)
+) \(x^2-4\ne0\Leftrightarrow x^2\ne4\Leftrightarrow x\ne\pm2\)
Vậy ĐKXĐ của A là \(x\ne-1;x\ne0;x\ne\pm2\)
a, \(Đkxđ:\hept{\begin{cases}x\ne-1\\x\ne0\\x\ne-2\end{cases}}\)
\(A=\left[\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right]:\frac{x^2-4}{3x^2+6x}\)
\(=\left[\frac{x^2+2x+1}{x^2-x+1}-\frac{2x^2+4x-1}{\left(x+1\right)\left(x^2-x+1\right)}-\frac{1}{x+1}\right].\frac{3x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x^2+2x+1\right)\left(x+1\right)-2x^2-4x+1-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)
\(=\frac{x^3+1}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{3x}{x-2}\)
\(=\frac{3x}{x-2}=3+\frac{6}{x-2}\)
b, Để A nguyên thì \(\Leftrightarrow6\)chia hết cho \(x-2\)
Hay \(\left(x-2\right)\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
x-2 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | -4 | -1 | 0 | 1 | 3 | 4 | 5 | 8 |
Vậy ............................
b) \(A=\left(\frac{\left(x+1\right)^2}{\left(x+1\right)^2-3x}-\frac{2x^2+4x-1}{x^3+1}-\frac{1}{x+1}\right):\frac{x^2-4}{3x^2+6x}\)
\(=\left(\frac{\left(x+1\right)^2}{x^2-x+1}-\frac{2x^2+4x-1}{x^3+1}-\frac{x^2-x+1}{\left(x+1\right)\left(x^2-x+1\right)}\right)\)\(:\frac{x^2-4}{3x^2+6x}\)
\(=\left(\frac{\left(x+1\right)^3}{x^3+1}-\frac{2x^2+4x-1}{x^3+1}-\frac{x^2-x+1}{x^3+1}\right)\)\(.\frac{3x^2+6x}{x^2-4}\)
\(=\left(\frac{x^3+3x^2+3x+1}{x^3+1}-\frac{2x^2+4x-1}{x^3+1}-\frac{x^2-x+1}{x^3+1}\right)\)\(.\frac{3x^2+6x}{x^2-4}\)
\(=\frac{x^3+1}{x^3+1}\)\(.\frac{3x^2+6x}{x^2-4}\)\(=\frac{3x^2+6x}{x^2-4}\)
\(=\frac{3x\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{3x}{x-2}\)
A nguyên\(\Leftrightarrow3x⋮x-2\)
\(\Leftrightarrow3\left(x-2\right)+6⋮x-2\)
Mà \(\left(x-2\right)⋮x-2\Rightarrow6⋮x-2\)
\(\Rightarrow x-2\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)
Lập bảng:
\(x-2\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(3\) | \(-3\) | \(6\) | \(-6\) |
\(x\) | \(3\) | \(1\) | \(4\) | \(0\) | \(5\) | \(-1\) | \(8\) | \(-4\) |
Vậy\(x\in\left\{3;1;4;0;5;-1;8;-4\right\}\)