Chứng minh đa thức sau không có nghiệm:
a, x^2 + 2x + 2
b, x^2 - 2x + 5
c, x^2 - 4x + 5
Bài 10*. Chứng minh rằng các đa thức sau đây không có nghiệm:
a) f(x) = x2 + 4x + 10 c) f(x) = 5x4 + x2 +
b) g(x) = x2 - 2x + 2017 d) g(x) = 4x2004 + x2018 + 1
`a,`
`f(x)=x^2+4x+10`
\(\text{Vì }\)\(x^2\ge0\left(\forall x\right)\)
`->`\(x^2+4x+10\ge10>0\left(\forall\text{ x}\right)\)
`->` Đa thức không có nghiệm (vô nghiệm).
`c,`
`f(x)=5x^4+x^2+` gì nữa bạn nhỉ? Mình đặt vd là 1 đi nha :v.
Vì \(x^4\ge0\text{ }\forall\text{ }x\rightarrow5x^4\ge0\text{ }\forall\text{ }x\)
\(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(5x^4+x^2+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`b,`
`g(x)=x^2-2x+2017`
Vì \(x^2\ge0\text{ }\forall\text{ }x\)
`->`\(x^2-2x+2017\ge2017\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
`d,`
`g(x)=4x^2004+x^2018+1`
Vì \(x^{2004}\ge0\text{ }\forall\text{ }x\rightarrow4x^{2004}\ge0\text{ }\forall\text{ }x\)
\(x^{2018}\ge0\text{ }\forall\text{ }x\)
`->`\(4x^{2004}+x^{2018}+1\ge1>0\text{ }\forall\text{ }x\)
`->` Đa thức vô nghiệm.
Chứng minh các đa thức sau không coa nghiệm:a-x²+9x-10;b-4x²-4x+5
1 . Cho f ( x ) = 4x³ - 2x² + x - 5 g ( x ) = x³ + 4 x² - 3x + 2 h ( x ) = -3 x ³ + x² + x - 2 Tính : a ) f ( x ) + g ( x ) b ) g ( x ) - h ( x ) 2 . Tìm nghiệm đa thức : a , 7 - 2x b , ( x + 1 ) ( x - 2 ) ( 2x - 1 ) c , 2x + 5 d , 3x ² + x 3 . Chứng minh rằng các đa thức sau không có nghiệm : a , f ( x ) = x ² + 1 b , ( 2x + 1 ) ² + 3
Trình bày đề bài cho dễ nhìn bạn eyy :v
Khó nhìn như này thì God cũng chịu -.-
mù mắt xD ghi rõ đề đi bạn ơi !
Dịch:
Cho \(\hept{\begin{cases}f\left(x\right)=4x^3-2x^2+x-5\\g\left(x\right)=x^3+4x^2-3x+2\\h\left(x\right)=-3x^2+x^2+x-2\end{cases}}\)
Tính a) \(f\left(x\right)+g\left(x\right)\)
b) \(g\left(x\right)-h\left(x\right)\)
2. Tìm nghiệm của đa thức
a) \(7-2x\)
b) (x+1)(x-2)(2x-1)
c) 2x+5
d) 3x2+x
3. CMR các đa thức sau không có nghiệm
\(a,f\left(x\right)=x^2+1\)
\(b,\left(2x+1\right)^2+3\)
Bài 1 : Rút Gọn Đa thức sau
3(2x+5)2-3(4x+1).(1-4x)
Bài 2 : Chia Đa thức Sau cho đơn Thức
( x4-2x3+4x2-8x):(x2+4)
Bài 3 : Chứng minh rằng biểu thức x2-xy+y2 không có giá trị âm vs mọi giá trị của x và y
Bài 4 : Tìm số a để đa thức 2x3-3x2+x+a chia hết cho đa thức x+2
chứng tỏ các đa thức sau không có nghiệm x mũ 2 +2x +2; b/x mũ 2 +2x +1; c/x mũ 2 +3x +3; d/4x mũ 2-4x +2
chứng minh rằng các đa thức sau không có nghiệm
a) \(\left(2x-3\right)^2+10\)
b) \(x^2+2x+4\)
c) \(3x^2-x+5\)
a. ta có
(2x − 3)2 ≥ 0
=> (2x − 3)2 + 10 > 0
=> đa thức trên ko có nghiệm
b. ta có:
x2 ≥ 0
4 > 0
=> x2 + 4 > 0
=> x2 + 2x + 4 > 0
=> đa thức trên ko có nghiệm
câu c mik vẫn chưa biết chứng minh vì bài này lần đầu tiên làm. Sorry bạn !!!
chứng minh đa thức f(x)=-4x^4+3x^3-2x^2+x-1 không có nghiệm nguyên
Giả sử x=a là nghiệm nguyên f(a)
\(\Leftrightarrow-4a^4+3a^3-2a^2+a-1=0\\ \Leftrightarrow-4a^4-2a^2+4a^3-a\left(a^2-1\right)=1\\ \Leftrightarrow1=-4a^4+4a^3-2a^2-\left(a+1\right)a\left(a-1\right)\left(1\right)\)
Vì a nguyên nên \(\left(a+1\right)a⋮2\Rightarrow\left(a+1\right)a\left(a-1\right)⋮2\)
Mà \(-4a^4+4a^3-2a^2⋮2\)
\(\Rightarrow-4a^4+4a^3-2a^2-\left(a-1\right)a\left(a+1\right)⋮2\) kết hợp (1)
\(\Rightarrow1⋮2\left(VL\right)\)
Vậy không tồn tại nghiệm nguyên của f(x)
Cho các đa thức:
A(x) = 2x^5 – 4x^3 + x^2 – 2x + 2
B(x) = x^5 – 2x^4 + x^2 – 5x + 3
C(x) = x^4 + 4x^3 + 3x^2 – 8x +4 3/16
1, Tính M(x) = A(x) – 2B(x) + C(x)
2, Tính giá trị của M(x) khi x = -√0,25
3, Có giá trị nào của x để M(x) = 0 không ?
Lời giải:
1.
\(M(x)=A(x)-2B(x)+C(x)\)
\(2x^5 – 4x^3 + x^2 – 2x + 2-2(x^5 – 2x^4 + x^2 – 5x + 3)+ (x^4 + 4x^3 + 3x^2 – 8x + \frac{43}{16})\)
\(=5x^4+2x^2-\frac{21}{16}\)
2.
Khi $x=-\sqrt{0,25}=-0,5$ thì:
\(M(x)=5.(-0,5)^4+2(-0,5)^2-\frac{21}{16}=\frac{-1}{2}\)
3)
$M(x)=0$
$\Leftrightarrow 5x^4+2x^2-\frac{21}{16}=0$
$\Leftrightarrow 80x^4+32x^2-21=0$
$\Leftrightarrow 4x^2(20x^2-7)+3(20x^2-7)=0$
$\Leftrightarrow (4x^2+3)(20x^2-7)=0$
Vì $4x^2+3>0$ với mọi $x$ thực nên $20x^2-7=0$
$\Rightarrow x=\pm \sqrt{\frac{7}{20}}$
Đây chính là giá trị của $x$ để $M(x)=0$
Bài 1: Chứng minh các biểu thức sau không phụ thuộc vào biến x.
a/ (2x + 1)(4x – 3) – 6x(x + 5) – 2x(x – 7) + 18x
b/ 9x(2x – 5) – (6x + 2)(3x – 2) + 39x
c/ 4x(2x – 3) + x(x + 2) – 9x(x – 1) + x – 5
a/ (2x + 1)(4x – 3) – 6x(x + 5) – 2x(x – 7) + 18x
=8x^2-6x+4x-3-6x^2-30x-2x^2+14x+18x
=-3
vậy...
a) Ta có: \(\left(2x+1\right)\left(4x-3\right)-6x\left(x+5\right)-2x\left(x-7\right)+18x\)
\(=8x^2-6x+4x-3-6x^2-30x-2x^2+14x+18x\)
\(=-3\)
b) Ta có: \(9x\left(2x-5\right)-\left(6x+2\right)\left(3x-2\right)+39x\)
\(=18x^2-45x-18x^2+12x-6x+4+39x\)
\(=4\)
c) Ta có: \(4x\left(2x-3\right)+x\left(x+2\right)-9x\left(x-1\right)+x-5\)
\(=8x^2-12x+x^2+2x-9x^2+9x+x-5\)
\(=-5\)