Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
꧁WღX༺
Xem chi tiết
Thầy Tùng Dương
Xem chi tiết
Lê Song Phương
27 tháng 3 2023 lúc 8:47

a) Theo đề bài, ta có \(\widehat{DEC}=\widehat{DFC}=90^o\) \(\Rightarrow\) Tứ giác CDEF nội tiếp do có 2 đỉnh kề nhau E, F cùng nhìn cạnh CD dưới góc vuông. \(\Rightarrow\widehat{DFE}=\widehat{DCE}=\widehat{DCB}=\widehat{DAB}\) (do tứ giác ABDC nội tiếp nên \(\widehat{DCB}=\widehat{DAB}\)). Từ đó suy ra đpcm.

b) Có \(\widehat{KBD}=\widehat{ACD}\) (do tứ giác ABDC nội tiếp) và \(\widehat{ACD}=\widehat{KED}\) (do tứ giác CDEF nội tiếp) \(\Rightarrow\widehat{KBD}=\widehat{KED}\) \(\Rightarrow\) Tứ giác DKBE nội tiếp. 

Mặt khác, \(\widehat{BDA}=\widehat{BCA}=\widehat{EDF}\) và \(\widehat{BAD}=\widehat{BCD}=\widehat{EFD}\)

\(\Rightarrow\Delta DBA~\Delta DEF\left(g.g\right)\)\(\Rightarrow\dfrac{DA}{DF}=\dfrac{DB}{DE}\) \(\Rightarrow DA.DE=DB.DF\)

c) \(\Delta DBA~\Delta DEF\Rightarrow\dfrac{DB}{DE}=\dfrac{AB}{EF}=\dfrac{2BI}{2EJ}=\dfrac{BI}{EJ}\) . Lại có \(\widehat{DBI}=\widehat{DEJ}\) nên \(\Delta DBI~\Delta DEJ\left(c.g.c\right)\) \(\Rightarrow\widehat{DIB}=\widehat{DJE}\) hay \(\widehat{DIK}=\widehat{DJK}\) \(\Rightarrow\) Tứ giác DJIK nội tiếp \(\Rightarrow\) \(\widehat{DJI}=180^o-\widehat{DKI}\) . Lại có \(\widehat{DKI}=180^o-\widehat{BED}=90^o\) (do tứ giác DKBE nội tiếp) \(\Rightarrow\widehat{DJI}=90^o\) \(\Rightarrow\) đpcm

Hieuphan
6 tháng 5 lúc 12:36

Vbh

Phùng Hữu Kiên
Xem chi tiết
Tiểu Nghé
4 tháng 9 2016 lúc 9:59

Câu hỏi của Nguyễn Ngọc Sơn Lâm - Toán lớp 7 - Học toán với OnlineMath

Lê Diệu Chinh
Xem chi tiết
Phương linh Bui
Xem chi tiết
Nguyễn Thị Quỳnh
Xem chi tiết
Thầy Cao Đô
Xem chi tiết
Kudo Shinichi
7 tháng 3 2023 lúc 15:07

a)

Xét \(\Delta AOD\) và \(\Delta COB\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{O}:chung\\OB=OD\left(gt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AOD=\Delta COB\left(c.g.c\right)\)

\(\Rightarrow AD=BC\left(\text{2 cạnh tương ứng}\right)\left(\text{đpcm}\right)\)

b) 

Nối A với C

Ta có: \(\left\{{}\begin{matrix}OA=OC\\OB=OD\end{matrix}\right.\left(gt\right)\Rightarrow OA-OB=OC-OD\)

Hay \(AB=CD\)

Xét \(\Delta ABC\) và \(\Delta CDA\) có: \(\left\{{}\begin{matrix}AB=CD\left(cmt\right)\\AC:chung\\AD=BC\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABC=\Delta DCA\left(c.c.c\right)\)

\(\Rightarrow\widehat{ABC}=\widehat{CDA}\left(\text{2 góc tương ứng}\right)\)

Vì \(\Delta AOD=\Delta COB\left(cmt\right)\Rightarrow\widehat{A}=\widehat{C}\left(\text{2 góc tương ứng}\right)\)

Xét \(\Delta ABE\) và \(\Delta CDE\) có: \(\left\{{}\begin{matrix}\widehat{ABC}=\widehat{CDA}\left(cmt\right)\\AB=CD\left(cmt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABE=\Delta CDE\left(g.c.g\right)\left(\text{đpcm}\right)\)

c) Vì \(\Delta ABE=\Delta CDE\left(cmt\right)\Rightarrow AE=CE\left(\text{2 cạnh tương ứng}\right)\)

Xét \(\Delta AOE\) và \(\Delta COE\) có: \(\left\{{}\begin{matrix}OA=OC\left(gt\right)\\\widehat{A}=\widehat{C}\left(cmt\right)\\AE=CE\left(cmt\right)\end{matrix}\right.\)

\(\Rightarrow\Delta AOE=\Delta COE\left(c.g.c\right)\\ \Rightarrow\widehat{AOE}=\widehat{COE}\left(\text{2 góc tương ứng}\right)\)

`=> OE` là phân giác của \(\widehat{xOy}\) (đpcm)

Vũ Phương Anh
18 tháng 4 2023 lúc 19:51

a) Xét △��� và △���, có

��=�� (giả thiết);

�^ chung;

��=�� (giả thiết).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

b) Do ��=�� và ��=�� nên ��=��.

Mà △���=△��� (chứng minh trên)

⇒���^=���^���^=���^ (hai góc tương ứng)

Mặt khác ���^+���^=���^+���^=180∘

⇒���^=���^

Xét △��� và △��� có

���^=���^ (chứng minh trên);

��=�� (chứng minh trên);

���^=���^ (chứng minh trên) 

Do đó △���=△��� (g.c.g).

c) Vi △���=△��� (chứng minh trên) nên ��=�� (hai cạnh tương ứng).

Xét △��� và △��� có ��=�� (chứng minh trên);

�� cạnh chung;

��=�� (giả thiết).

Do đó = (c.c.c)

⇒���^=���^

COE

 (hai góc tương ứng)

⇒�� là tia phân giác của ���^.

Nguyễn Quang Đạt
20 tháng 4 2023 lúc 21:26

a) Xét △��� và △���, có

��=�� (giả thiết);

�^ chung;

��=�� (giả thiết).

Do đó △���=△��� (c.g.c)

⇒��=�� (hai cạnh tương ứng).

b) Do ��=�� và ��=�� nên ��=��.

Mà △���=△��� (chứng minh trên)

⇒���^=���^���^=���^ (hai góc tương ứng)

Mặt khác ���^+���^=���^+���^=180∘

⇒���^=���^

Xét △��� và △��� có

���^=���^ (chứng minh trên);

��=�� (chứng minh trên);

���^=���^ (chứng minh trên) 

Do đó △���=△��� (g.c.g).

c) Vi △���=△��� (chứng minh trên) nên ��=�� (hai cạnh tương ứng).

Xét △��� và △��� có ��=�� (chứng minh trên);

�� cạnh chung;

��=�� (giả thiết).

Do đó △���=△��� (c.c.c)

⇒���^=���^ (hai góc tương ứng)

⇒�� là tia phân giác của ���^.

Phí Quỳnh Anh
Xem chi tiết
abc
1 tháng 8 2016 lúc 20:16

Giả sử a>b( trường hợp a<b chứng minh tương tự). Chú ý rằng nếu hai lũy thừa bằng nhau có cơ số( là số tự nhiên) khác nhauthì lũy thừa nào có cơ số nhỏ hơn sẽ có số mũ lớn hơn. Xong tiếp tục giải là ra

Nguyễn Thúy Ngọc
Xem chi tiết
Fudo
22 tháng 1 2020 lúc 11:44

Bài 1 :                                                         Bài giải

Ta có : 

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)

\(A=7\cdot400+7^4\cdot400\)

\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)

\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)

Khách vãng lai đã xóa
Me
22 tháng 1 2020 lúc 11:44

Bài 1 :                                                         Bài giải

Ta có : 

\(A=7+7^2+7^3+...+7^8\)

\(A=\left(7+7^2+7^3+7^4\right)+\left(7^5+7^6+7^7+7^8\right)\)

\(A=7\left(1+7+7^2+7^3\right)+7^4\left(1+7+7^2+7^3\right)\)

\(A=7\cdot400+7^4\cdot400\)

\(A=7\cdot8\cdot50+7^4\cdot8\cdot50\)

\(A=50\left(7\cdot8+7^4\cdot8\right)\text{ }⋮\text{ }50\)

Khách vãng lai đã xóa
Fudo
22 tháng 1 2020 lúc 11:51

Bài 2 :                                                       Bài giải

a, \(\left(x+5\right)\left(y-2\right)=-6\)

\(\Rightarrow\text{ }\left(x+5\right)\text{ ; }\left(y-2\right)\inƯ\left(-6\right)\)

Ta có bảng : 

x + 5 - 2- 3- 1- 6
y - 23261
x- 7- 8- 6- 11
y5483

Vậy \(\left(x\text{ ; }y\right)=\left(-7\text{ ; }5\right)\text{ ; }\left(-8\text{ ; }4\right)\text{ ; }\left(-6\text{ ; }8\right)\text{ ; }\left(-11\text{ ; }3\right)\)

Khách vãng lai đã xóa