Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Khuất Hải Ninh
Xem chi tiết
Minh Hồng
17 tháng 4 2022 lúc 10:09

Do \(\left(x+3\right)^{2020}\ge0\) và \(\left(y-2\right)^{2020}\ge0\) với mọi \(x,y\)

Để \(\left(x+3\right)^{2020}+\left(y-2\right)^{2020}=0\) thì \(x+3=0\) và \(y-2=0\)

Vậy \(x=-3,y=2\)

Nguyễn Minh Thy
Xem chi tiết

\(\left(x+3\right)^{2020}+\left(y-2\right)^{2020}=0\)

Vì \(\left(x+3\right)^{2020}\ge0\forall x;\left(y-2\right)^{2020}\ge0\forall y\)

\(\Rightarrow\left(x+3\right)^{2020}+\left(y-2\right)^{2020}\ge0\forall x;y\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x+3\right)^{2020}=0\\\left(y-2\right)^{2020}=0\end{cases}\Leftrightarrow\hept{\begin{cases}x+3=0\\y-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-3\\y=2\end{cases}}}\)

Vậy ....

Khách vãng lai đã xóa
Hồ Nguyễn Ngọc Minh
2 tháng 12 2023 lúc 18:53

Ta có : (�−6)2020≥0∀�

            2(�+3)2020≥0∀�

        =>(�−6)2020+2(�+3)2020≥0∀�,�

Dấu "=" xảy ra <=>{�−6=0�+3=0<=>{�=6�=−3

Xem chi tiết
lâm pham
22 tháng 3 2022 lúc 16:14

x thuộc 2019 ; 2020

y=2021

prolaze
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 3 2021 lúc 19:24

Do \(x-2019\) và \(x-2020\) là 2 số nguyên liên tiếp nên luôn khác tính chẵn lẻ

\(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}\) luôn lẻ với mọi x

Nếu \(y< 2021\Rightarrow\) vế trái nguyên còn vế phải không nguyên (không thỏa mãn)

\(\Rightarrow y\ge2021\)

Nếu \(y>2021\), do 2020 chẵn \(\Rightarrow2020^{y-2021}\) chẵn. Vế trái luôn lẻ, vế phải luôn chẵn \(\Rightarrow\) không tồn tại x; y nguyên thỏa mãn

\(\Rightarrow y=2021\)

Khi đó pt trở thành: \(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=1\)

Nhận thấy \(x=2019\) và \(x=2020\) là 2 nghiệm của pt đã cho

- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}>0\\\left(x-2020\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left(x-2020\right)^{2020}>0\\\left(x-2019\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(2019< x< 2020\) viết lại pt: \(\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}=1\)

Ta có: \(\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}< x-2019\\\left(2020-x\right)^{2020}< 2020-x\end{matrix}\right.\)

\(\Rightarrow\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}< 1\) pt vô nghiệm

Vậy pt có đúng 2 cặp nghiệm: \(\left(x;y\right)=\left(2019;2021\right);\left(2020;2021\right)\)

Trần Nguyễn Duy Long
Xem chi tiết
Toru
5 tháng 12 2023 lúc 20:33

Ta thấy: \(\left\{{}\begin{matrix}\left(x+3\right)^{2020}\ge0\forall x\\\left(y-2\right)^{2020}\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x+3\right)^{2020}+\left(y-2\right)^{2020}\ge0\forall x,y\)

Mà: \(\left(x+3\right)^{2020}+\left(y-2\right)^{2020}=0\)

nên: \(\left\{{}\begin{matrix}x+3=0\\y-2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\y=2\end{matrix}\right.\)

Vậy: ...

N.T.M.D
Xem chi tiết
Khánh Ngọc
8 tháng 10 2020 lúc 11:03

x2 + 2y2 + z2 - 2xy - 2y - 4z + 5 = 0

<=> ( x2 - 2xy + y2 ) + ( y2 - 2y + 1 ) + ( z2 - 4z + 4 ) = 0

<=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2 = 0

Vì \(\hept{\begin{cases}\left(x-y\right)^2\ge0\\\left(y-1\right)^2\ge0\\\left(z-2\right)^2\ge0\end{cases}}\forall x;y;z\)=> ( x - y )2 + ( y - 1 )2 + ( z - 2 )2\(\ge\)0\(\forall\)x ; y ; z

Dấu "=" xảy ra <=>\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\)<=>\(\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)( 1 )

Thay ( 1 ) vào A , ta được :

\(A=\left(1-1\right)^{2020}+\left(1-2\right)^{2020}+\left(2-3\right)^{2020}=0+1+1=2\)

Vậy A = 2

Khách vãng lai đã xóa
Nguyễn Minh Đăng
8 tháng 10 2020 lúc 12:53

Ta có: \(x^2+2y^2+z^2-2xy-2y-4z+5=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2-2y+1\right)+\left(z^2-4z+4\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-1\right)^2+\left(z-2\right)^2=0\)

Mà \(VT\ge0\left(\forall x,y,z\right)\) nên dấu "=" xảy ra khi:

\(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-1\right)^2=0\\\left(z-2\right)^2=0\end{cases}}\Rightarrow\hept{\begin{cases}x=y=1\\z=2\end{cases}}\)

Khách vãng lai đã xóa
Xem chi tiết
Ga
11 tháng 9 2021 lúc 15:38

Bạn tham khảo hình ảnh :

undefined

Cre : lazi.vn

Hok tốt

Khách vãng lai đã xóa
ღTruzgღ★ - FϏ
11 tháng 9 2021 lúc 15:41

bạn tham khảo:

undefined

nguồn: lazi.vn

~HT~

Khách vãng lai đã xóa
Xyz OLM
11 tháng 9 2021 lúc 15:43

Ta có |x| + 2019|y - 2020| = 1

=> |x| \(\le\)1

mà |x| \(\ge0\forall x\)

=> \(0\le\left|x\right|\le1\Rightarrow x\in\left\{0;1;-1\right\}\)

Thay x = 0 vào |x| + 2019|y - 2020| = 1

=> 0 + 2019|y - 2020| = 1

<=> \(\left|y-2020\right|=\frac{1}{2019}\)

=> \(\orbr{\begin{cases}y-2020=\frac{1}{2019}\\y-2020=-\frac{1}{2019}\end{cases}}\Leftrightarrow y=2020\pm\frac{1}{2019}\)(loại) 

Thay x = 1 vào phương trình 

=> 2019|y - 2020| = 0 

<=> |y - 2020| = 0

<=> y - 2020 = 0

<=> y = 2020

Khi x = -1 => 2019|y - 2020| = 0

<=> |y - 2020| = 0

=> y - 2020 = 0

=> y = 2020

Vậy cặp (x;y) thỏa là (1;2020)  ; (-1;2020) 

Khách vãng lai đã xóa
Fucking bitch
Xem chi tiết
Nguyễn Thái Hoàng Anh
Xem chi tiết
Đặng Ngọc Quỳnh
25 tháng 12 2020 lúc 19:30

\(\Rightarrow2019\left|x-1\right|+2020\left|y-2\right|+2021\left|y-3\right|+2022\left|y-4\right|=2020+2022\)

\(\Rightarrow\hept{\begin{cases}\left|y-2\right|=1\\\left|x-1\right|=0\\\left|y-4\right|=1\end{cases}\Rightarrow\hept{\begin{cases}x=1\\y=3\end{cases}}}\)

Khách vãng lai đã xóa