Một hình chóp tứ giác có chiều cao 35cm, cạnh đáy 24cm. a tính thể tích hình chóp, b tính độ dài trung đoạn, c tính độ dài toàn phần của hình chóp
một hình chóp tứ giác đều có chiều cao bằng 15cm, trung đoạn bằng 17cm, độ dài cạnh đáy của hình chóp bằng 16cm. Tính diện tích xung quanh, diện tích toàn phần ( tổng diện tích các mặt đáy của hình chóp ), thể tích của hình chóp tứ giác đều?
Sxq=16*4*17/2=544cm2
Stp=544+16^2=800cm2
V=1/3*16^2*15=1280cm3
Nữa chu vi đáy của hình chóp đều:
\(16\cdot4:2=32\left(cm\right)\)
Diện tích xung quanh của hình chóp đều:
\(S_{xq}=32\cdot17=544\left(cm^2\right)\)
Diện tích mặt đáy của hình chóp đều:
\(S_đ=16^2=256\left(cm^2\right)\)
Diện tích toàn phần của hình chóp đều:
\(S_{tp}=S_đ+S_{xq}=544+256=800\left(cm^2\right)\)
Thể tích của hình chóp đều:
\(V=\dfrac{1}{3}\cdot256\cdot15=1280\left(cm^3\right)\)
Một hình chóp tứ giác đều S.ABCD có độ dài cạnh đáy là 10 cm, chiều cao hình chóp là 12 cm. Tính :
a) Diện tích toàn phần của hình chóp
b) Thể tích hình chóp
a) Tính diện tích xung quanh của hình chóp tam giác đều có độ dài cạnh đáy là 1010cm, chiều cao của mặt bên xuất phát từ đỉnh của hình chóp tam giác đều là 1212cm.
b) Tính diện tích toàn phần và thể tích của hình chóp tứ giác đều có độ dài cạnh đáy là 7272dm, chiều cao là 68,168,1dm, chiều cao của mặt bên xuất phát từ đỉnh của hình chóp tứ giác đều là 7777dm.
a) Diện tích xung quanh của hình chóp tam giác đều là: \(\frac{{10.3}}{2}.12 = 180\) (\(c{m^2}\))
b) Diện tích xung quanh của hình chóp tứ giác đều là: \(\frac{{72.4}}{2}.77 = 11088\) (\(d{m^2}\))
Diện tích đáy của hình chóp tứ giác đều là: \({72^2}=5184\) (\(d{m^2}\))
Diện tích toàn phần của hình chóp tứ giác đều là: \(11088 + 5184 = 16 272\) (\(d{m^2}\))
Thể tích của hình chóp tứ giác đều là: \(\frac{1}{3}.5184.68,1=117676,8\) (\(d{m^3}\))
Cho hình chóp tứ giác đều S.MNPQ như hình vẽ bên có chiều cao 15 xăng ti mét và thể tích gi là1280 xăng ti mét khối a,tính độ dài cạnh đáy của hình chóp b, tính diện tích xung quanh của hình chóp biết độ dài trung đoạn của hình chóp là 17cm
cần gấp help me pleas
a: Diện tích đáy là 1280:15=256/3(cm2)
Độ dài đáy là: \(\sqrt{\dfrac{256}{3}}=\dfrac{16}{\sqrt{3}}\left(cm\right)\)
b: \(Sxq=\dfrac{1}{2}\cdot17\cdot\dfrac{16}{\sqrt{3}}\cdot4\simeq78,52\left(cm^2\right)\)
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB = 20cm, cạnh bên SA = 24cm.
a) Tính chiều cao SO rồi tính thể tích của hình chóp.
b) Tính diện tích toàn phần của hình chóp.
a) S.ABCD là hình chóp tứ giác đều
⇒ ABCD là hình vuông
⇒ AC = AB√2 = 20√2 (cm).
SO là chiều cao của hình chóp
⇒ O = AC ∩ BD và SO ⊥ (ABCD)
⇒ SO ⊥ AO
⇒ ΔSAO vuông tại O
⇒ SO2 + OA2 = SA2
⇒ SO2 = SA2 – OA2 = SA2 – (AC/2)2 = 242 - = 376
⇒ SO = √376 ≈ 19,4 (cm).
Thể tích hình chóp:
b) Gọi H là trung điểm của CD
SH2 = SD2 – DH2 = 242 – = 476
⇒ SH = √476 ≈ 21,8 (cm)
⇒ Sxq = p.d = 2.AB.SH = 2.20.√476 ≈ 872,7 (cm2 ).
Sđ = AB2 = 202 = 400 (cm2 )
⇒ Stp = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).
a/ Tính thể tích của hình chóp tam giác đều, biết diện tích đáy bằng 6cm 2 và chiều cao bằng 4cm
b/ Tính thể tích của hình chóp tứ giác đều, biết chiều cao bằng 10cm và cạnh đáy bằng 4cm.
c/ Tính độ dài trung đoạn của hình chóp tứ giác đều biết diện tích xung quanh của hình chóp là 60cm 2 , độ dài cạnh đáy 6cm.
d/ Tính diện tích xung quanh và diện tích toàn phần của hình chóp tứ giác đều biết cạnh đáy là 12cm, chiều cao mặt bên là 8cm.
e/ Tính chu vi đáy của hình chóp tứ giác đều biết thể tích của hình chóp là 125cm 3 ,chiều cao của hình chóp là 15cm.
f/ Tính diện tích xung quanh của hình chóp tam giác đều biết độ dài cạnh đáy là 10 cm, trung đoạn của hình chóp là 12cm.
Cho hình chóp tứ giác đều S.ABCD có đường cao bằng 8cm, trung đoạn bằng 10 cm. Hãy tính:
a) Độ dài cạnh đáy hình chóp;
b) Diện tích xung quanh hình chóp;
c) Thể tích hình chóp
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB = 20cm, cạnh bên SA = 24cm
a) Tính chiều cao SO rồi tính thể tích của hình chóp
b) Tính diện tích toàn phần của hình chóp
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy AB = 20cm, cạnh bên SA = 24cm.
a) Tính chiều cao SO rồi tính thể tích của hình chóp.
b) Tính diện tích toàn phần của hình chóp.
a) S.ABCD là hình chóp tứ giác đều
⇒ ABCD là hình vuông
⇒ AC = AB√2 = 20√2 (cm).
SO là chiều cao của hình chóp
⇒ O = AC ∩ BD và SO ⊥ (ABCD)
⇒ SO ⊥ AO
⇒ ΔSAO vuông tại O
⇒ SO2 + OA2 = SA2
\(\Rightarrow SO^2=SA^2-OA^2=SA^2-\left(\frac{AC}{2}\right)^2=24^2-\left(\frac{20\sqrt{2}}{2}\right)^2=376\)
⇒ SO = √376 ≈ 19,4 (cm).
Thể tích hình chóp :
\(V=\frac{1}{2}SO.S_{ABCD}=\frac{1}{3}.\sqrt{376}.20^2\approx2585,43\left(cm^3\right)\)
b) Gọi H là trung điểm của CD
\(SH^2=SD^2-DH^2=24^2-\left(\frac{20}{2}\right)^2=476\)
⇒ SH = √476 ≈ 21,8 (cm)
⇒ Sxp = p.d = 2.AB.SH = 2.20.√476 ≈ 872,7 (cm2 ).
Sđ= AB2 = 202 = 400 (cm2 )
⇒ Stq = Sxq + Sđ = 872,7 + 400 = 1272,7 (cm2 ).