cho a, b thuộc r thỏa mãn a^2+b^2=2. tìm giá trị lớn nhất và nhỏ nhất P=(3-a)(3-b)
Cho a, b, c là các số thực không âm thỏa mãn \(a^2+b^{2^{ }}+c^{2^{ }}=3\). Tìm giá trị nhỏ nhất và lớn nhất của P = a3 + b3 + c3.
Lời giải:
Tìm min:
Áp dụng BĐT AM-GM:
$a^3+a^3+1\geq 3a^2$
$b^3+b^3+1\geq 3b^2$
$c^3+c^3+1\geq 3c^2$
$\Rightarrow 2(a^3+b^3+c^3)+3\geq 3(a^2+b^2+c^2)$
$\Leftrightarrow 2P+3\geq 9$
$\Leftrightarrow P\geq 3$
Vậy $P_{\min}=3$ khi $(a,b,c)=(1,1,1)$
----------------
Tìm max:
$a^2+b^2+c^2=3\Rightarrow a^2,b^2,c^2\leq 3$
$\Rightarrow a,b,c\leq \sqrt{3}$
Do đó: $a^3-\sqrt{3}a^2=a^2(a-\sqrt{3})\leq 0$
$\Rightarrow a^3\leq \sqrt{3}a^2$
Tương tự với $b,c$ và cộng theo vế:
$P\leq \sqrt{3}(a^2+b^2+c^2)=3\sqrt{3}$
Vậy $P_{\max}=3\sqrt{3}$ khi $(a,b,c)=(\sqrt{3},0,0)$ và hoán vị.
Cho hai số a,b thỏa mãn a^2+b^2=1. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức: A=a^6+b^6
\(A=a^6+b^6=\left(a^2\right)^3+\left(b^2\right)^3\)
\(=\left(a^2+b^2\right)\left(a^4+b^4-a^2b^2\right)\)
\(=1.\left[\left(a^4+b^4+2a^2b^2\right)-3a^2b^2\right]\)
\(=\left(a^2+b^2\right)^2-3a^2b^2\)
\(=1^2-3a^2b^2\)
\(\left(a-b\right)^2\ge0\Rightarrow a^2+b^2-2ab\ge0\Rightarrow\frac{a^2+b^2}{2}\ge ab\)
\(\Rightarrow ab\le1:2=0,5\Rightarrow3a^2b^2\le\frac{3}{4}\)
\(\Rightarrow A=1^2-3a^2b^2\ge1-\frac{3}{4}=\frac{1}{4}\)
\(\Rightarrow MinA=\frac{1}{4}\Leftrightarrow a=b=\frac{1}{2}\)
Vậy ...
câu1:
a) Cho các số thực không âm a, b, c thỏa mãn a + b + c =1. Tìm giá trị lớn nhất và giá trị nhỏ
nhất của biểu thức:
P=\(\frac{ab+bc+ca-abc}{a+2b+c}\)
b) Cho các số thực a, b, c thỏa mãn \(^{a^2+b^2+c^2=1}\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P =ab +bc + ca .
Cho các số thực a, b, c thỏa mãn 2.( b2 + bc + c2) = 3.( 3 – a2). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức T = a + b + c
\(9=3a^2+2b^2+2bc+2c^2=\left(a+b+c\right)^2+2a^2+b^2+c^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+2a^2+\dfrac{1}{2}\left(b+c\right)^2-2a\left(b+c\right)\)
\(\Rightarrow9\ge\left(a+b+c\right)^2+\dfrac{1}{2}\left(2a-b-c\right)^2\ge\left(a+b+c\right)^2\)
\(\Rightarrow-3\le a+b+c\le3\)
\(T_{max}=3\) khi \(a=b=c=1\)
\(T_{min}=-3\) khi \(a=b=c=-1\)
Cho các số a,b,c thỏa mãn \(2\left(b^2+bc+c^2\right)=3\left(3-a^2\right)\)
Tìm giá trị lớn nhất và nhỏ nhất của biểu thức T = a+b+c
Cho a;b thỏa mãn a2+b2=\(\frac{a+b}{2}\). Tìm giá trị lớn nhất và giá trị nhỏ nhất của a-b
Cho các số thực a,b thỏa mãn \(a^2+b^2+ab=3\). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức:
\(P=2\left(a^3+b^3\right)-3ab\)
đặt \(t=a+b\) từ GT => \(3=t^2-ab\ge\frac{3}{4}t^2\)\(\Leftrightarrow\)\(-2\le t\le2\)
\(P=-4t^3-3t^2+18t+9=\hept{\begin{cases}\frac{-1}{4}\left(2t+3\right)^2\left(4t-9\right)-\frac{45}{4}\ge\frac{-45}{4}\left(dungvoit\le2\right)\\-\left(t-1\right)^2\left(4t+11\right)+20\le20\left(dungvoit\ge-2\right)\end{cases}}\)
\(P_{min}=\frac{-45}{4}\) tại
\(\hept{\begin{cases}a^2+b^2+ab=3\\a+b=\frac{-3}{2}\end{cases}}\Leftrightarrow\left(a;b\right)=\left\{\left(\frac{-3-\sqrt{21}}{4};\frac{-3+\sqrt{21}}{4}\right);\left(\frac{-3+\sqrt{21}}{4};\frac{-3-\sqrt{21}}{4}\right)\right\}\)
\(P_{max}=20\) tại \(\hept{\begin{cases}a^2+b^2+ab=3\\a+b=1\end{cases}}\Leftrightarrow\left(a;b\right)=\left\{\left(2;-1\right);\left(-1;2\right)\right\}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức S=a+b+c+ab+bc+ca với a,b,c là các số thực thỏa mãn \(a^2+b^2+c^2=3\)
\(\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=9\Rightarrow-3\le a+b+c\le3\)
\(S=a+b+c+\dfrac{\left(a+b+c\right)^2-\left(a^2+b^2+c^2\right)}{2}=\dfrac{1}{2}\left(a+b+c\right)^2+a+b+c-\dfrac{3}{2}\)
Đặt \(a+b+c=x\Rightarrow-3\le x\le3\)
\(S=\dfrac{1}{2}x^2+x-\dfrac{3}{2}=\dfrac{1}{2}\left(x+1\right)^2-2\ge-2\)
\(S_{min}=-2\) khi \(\left\{{}\begin{matrix}a+b+c=-1\\a^2+b^2+c^2=3\end{matrix}\right.\) (có vô số bộ a;b;c thỏa mãn)
\(S=\dfrac{1}{2}\left(x^2+2x-15\right)+6=\dfrac{1}{2}\left(x-3\right)\left(x+5\right)+6\le6\)
\(S_{max}=6\) khi \(x=3\) hay \(a=b=c=1\)
Cho các số a,b,c thỏa mãn: \(2\left(b^2+bc+c^2\right)=3\left(3-a^2\right)\). Tìm giá trị lớn nhất và nhỏ nhất của biểu thức T= a+b+c