tìm X biết \(42-\left(2x+32\right)+12:2=6\)
Tìm x biết
42-(2x+32)+12:2=6
\(\Rightarrow42-2x-32+6=6\\ \Rightarrow16-2x=6\\ \Rightarrow2x=10\\ \Rightarrow x=5\)
\(\Rightarrow42-2x-32+6=6\\ \Rightarrow16-2x=6\\ \Rightarrow2x=10\\ \Rightarrow x=5\)
Tìm x biết 42-(2x + 32) + 12 : 2 =6
42 - (2x + 32) + 12 = 6.2
42 - (2x + 32) + 12 = 12
42 - (2x + 32 ) = 12 - 12
42 - (2x + 32) = 0
2x + 32 = 42 - 0
2x + 32 = 42
2x = 42 - 32
2x = 10
=> x = 10 : 2
=> x = 5
Tìm x biết :
a) \(\frac{32-x}{7}=\frac{x-42}{9}\)
b) \(\left(2x-1\right)^2+\left|x+3\right|=0\)
\(\frac{32-x}{7}=\frac{x-42}{9}\)
=\(\frac{\left(32-x\right)9}{63}=\frac{\left(x-42\right)7}{63}\)
\(\Rightarrow\)\(\left(32-x\right)9=\left(x-42\right)7\)
=\(288-x9=x7-294\)
=\(288+294=x9+x7\)
=\(x=-36\frac{6}{16}\)
=\(x\times16=-582\)
\(x=-582\div16\)
a,\(\frac{32-x}{7}=\frac{x-42}{9}\)
\(\Leftrightarrow9\left(32-x\right)=7\left(x-42\right)\)
\(\Leftrightarrow288-9x-7x-294=0\)
\(\Leftrightarrow9x+7x=288-294\)
\(\Leftrightarrow2x=-6\)
\(\Leftrightarrow x=-3\)
b. \(\left(2x-1\right)^2+\left|x+3\right|=0\)
\(\Leftrightarrow\left|x+3\right|=-4x^2+4x-1\)
\(\left|x+3\right|=x+3\)khi \(x+3\ge0\)hay \(x\ge-3\)
\(\left|x+3\right|=-\left(x+3\right)\)khi \(x+3< 0\)hay \(x< -3\)
với \(x\ge-3\Rightarrow x+3=-4x^2+4x-1\)
\(\Leftrightarrow4x^2-4x+1+x+3=0\)
\(\Leftrightarrow4x^2-3x+4=0\)\(\Leftrightarrow\)vô nghiệm
với \(x< -3\)\(\Rightarrow-x-3=-4x+4-1\)
\(\Leftrightarrow4x^2-4x+1-x-3=0\)
\(\Leftrightarrow4x^2-5x-2=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5+\sqrt{57}}{8}\left(tm\right)\\x=\frac{5-\sqrt{57}}{8}\left(L\right)\end{cases}}\)
Tìm x,biết
\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=42\) 42
Tìm x biết : \(\frac{\left|x-2\right|}{12}+\frac{\left|x-2\right|}{20}+\frac{\left|x-2\right|}{30}+\frac{\left|x-2\right|}{42}=\frac{70^5}{2^3\cdot21^6}\)
\(\frac{|x-2|}{12}\)\(+\)\(\frac{|x-2|}{20}+\)\(\frac{|x-2|}{30}+\)\(\frac{|x-2|}{42}\)\(=\frac{70^5}{2^3.21^6}\)
\(\Rightarrow|x-2|.\left(\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}\right)=\frac{2^5.5^5.7^5}{2^3.7^6.3^6}\)
\(\Rightarrow|x-2|.\left(\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}\right)=\frac{2^2.5^5}{7.3^6}\)
\(\Rightarrow|x-2|.\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}\right)=\frac{4.5^5}{21.3^5}\)
\(\Rightarrow|x-2|\left(\frac{1}{3}-\frac{1}{7}\right)=\frac{4.5^5}{21.3^5}\)\(\Rightarrow|x-2|=\frac{5^5}{3^5}\)
ĐẾN ĐÂY DỄ RÙI TỰ GIẢI TIẾP
tìm x biết
1. 7200 : [\(\left(200.x+33600\right):x-500\)] =4
2. 42-( 2.x +32) +12 : x =6
4. 697 : [ ( 15. x +369 ) : x ] =17
5. 26 + 8 .x = 6.x+46
giúp mình nhé
Tìm số nguyên x biết:
1, -x +(-53) =(-42) - 41
2. -12 - x= -32 +19
3.453+x = -443+(-199)
4. -12-x = -32 +19
5. 32.(-2) +x = -120 -5.(-85)
6. -2x + 15.(-4) = 21.(-8) -12
Tìm x biết:
\(a,\left(x-\dfrac{3}{4}\right)+50\%=\dfrac{1}{6}\)
\(b,\dfrac{1}{2}x-\dfrac{5}{6}x=\dfrac{7}{2}\)
\(c,\left(4-x\right)\left(3x+5\right)=0\)
\(d,\dfrac{x}{16}=\dfrac{50}{32}\)
\(e,\left(2x-3\right)+\dfrac{3}{2}=-\dfrac{1}{4}\)
a: =>x-3/4=1/6-1/2=1/6-3/6=-2/6=-1/3
=>x=-1/3+3/4=-4/12+9/12=5/12
b: =>x(1/2-5/6)=7/2
=>-1/3x=7/2
hay x=-21/2
c: (4-x)(3x+5)=0
=>4-x=0 hoặc 3x+5=0
=>x=4 hoặc x=-5/3
d: x/16=50/32
=>x/16=25/16
hay x=25
e: =>2x-3=-1/4-3/2=-1/4-6/4=-7/4
=>2x=-7/4+3=5/4
hay x=5/8
Tìm x biết
1. \(\left(2x-3\right)^2=\left(x+5\right)^2\)
2. \(x^2\left(x-1\right)-4x^2+8x-4=0\)
3. \(x^2+7x+12=0\)
4. \(x^2+3x-18=0\)
5. \(x\left(x+6\right)-7x-42=0\)
a) (2x - 3)2 = (x + 5)2
=> 4x2 - 12x + 9 = x2 + 10x + 25
=> 4x2 - 12x + 9 - (x2 + 10x + 25) = 0
=> 3x2 - 22x - 16 = 0
=> 3x2 - 24x + 2x - 16 = 0
=> 3x(x - 8) + 2(x - 8) = 0
=> (3x + 2)(x - 8) = 0
=> \(\orbr{\begin{cases}3x+2=0\\x-8=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-\frac{2}{3}\\x=8\end{cases}}\)
b) x2(x - 1) - 4x2 + 8x - 4 = 0
=> x2(x - 1) - (2x - 2)2 = 0
=> x2(x - 1) - [2(x- 1)]2 = 0
=> x2(x - 1) - 4(x - 1)2 = 0
=> (x - 1)(x2 - 4(x - 1) = 0
=> (x - 1)(x2 - 4x + 4) = 0
=> (x - 1)(x - 2)2 = 0
=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
c) x2 + 7x + 12 = 0
=> x2 + 3x + 4x + 12 = 0
=> x(x + 3) + 4(x + 3) = 0
=> (x + 4)(x + 3) = 0
=> \(\orbr{\begin{cases}x+4=0\\x+3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-4\\x=-3\end{cases}}\)
d) x2 + 3x - 18 = 0
=> x2 + 6x - 3x - 18 = 0
=> x(x + 6) - 3(x + 6) = 0
=> (x - 3)(x + 6) = 0
=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
e) x(x + 6) - 7x - 42 = 0
=> x(x + 6) - 7(x + 6) = 0
=> (x - 7)(x + 6) = 0
=> \(\orbr{\begin{cases}x-7=0\\x+6=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=7\\x=-6\end{cases}}\)
1. ( 2x - 3 )2 = ( x + 5 )2
<=> ( 2x - 3 )2 - ( x + 5 )2 = 0
<=> [ ( 2x - 3 ) - ( x + 5 ) ][ ( 2x - 3 ) + ( x + 5 ) ] = 0
<=> ( 2x - 3 - x - 5 )( 2x - 3 + x + 5 ) = 0
<=> ( x - 8 )( 3x + 2 ) = 0
<=> \(\orbr{\begin{cases}x-8=0\\3x+2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}\)
2. x2( x - 1 ) - 4x2 + 8x - 4 = 0
<=> x2( x - 1 ) - ( 4x2 - 8x + 4 ) = 0
<=> x2( x - 1 ) - 4( x2 - 2x + 1 ) = 0
<=> x2( x - 1 ) - 4( x - 1 )2 = 0
<=> ( x - 1 )[ x2 - 4( x - 1 ) ] = 0
<=> ( x - 1 )( x2 - 4x + 4 ) = 0
<=> ( x - 1 )( x - 2 )2 = 0
<=> \(\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
3. x2 + 7x + 12 = 0
<=> x2 + 3x + 4x + 12 = 0
<=> x( x + 3 ) + 4( x + 3 ) = 0
<=> ( x + 3 )( x + 4 ) = 0
<=> \(\orbr{\begin{cases}x+3=0\\x+4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-3\\x=-4\end{cases}}\)
4. x2 + 3x - 18 = 0
<=> x2 - 3x + 6x - 18 = 0
<=> x( x - 3 ) + 6( x - 3 ) = 0
<=> ( x - 3 )( x + 6 ) = 0
<=> \(\orbr{\begin{cases}x-3=0\\x+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=-6\end{cases}}\)
5. x( x + 6 ) - 7x - 42 = 0
<=> x( x + 6 ) - 7( x + 6 ) = 0
<=> ( x + 6 )( x - 7 ) = 0
<=> \(\orbr{\begin{cases}x+6=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-6\\x=7\end{cases}}\)
a,\(\left(2x-3\right)^2=\left(x+5\right)^2\)
\(\left(2x-3\right)^2-\left(x+5\right)^2=0\)
\(\left(2x-3-x-5\right)\left(2x-3+x+5\right)=0\)
\(\left(x-8\right)\left(3x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-8=0\\3x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=8\\x=-\frac{2}{3}\end{cases}}}\)