Cho \(am^3=bn^3=cp^3\)và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=1\)
Chứng minh rằng \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}\).
Cho \(am^3=bn^3=cp^3\) và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=1\) . Chứng minh rằng :
\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}\)
Đặt \(am^3=bn^3=cp^3=k\)
Ta có \(\sqrt[3]{k}=\sqrt[3]{a}m=\sqrt[3]{b}n=\sqrt[3]{c}p=\frac{\sqrt[3]{a}}{\frac{1}{m}}=\frac{\sqrt[3]{b}}{\frac{1}{n}}=\frac{\sqrt[3]{c}}{\frac{1}{p}}\)
\(=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{\frac{1}{m}+\frac{1}{n}+\frac{1}{p}}=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\) \(\left(TCDTSBN\right)\)\(\left(1\right)\)
Ta cũng có \(k=\frac{am^2}{\frac{1}{m}}=\frac{bn^2}{\frac{1}{n}}=\frac{cp^2}{\frac{1}{p}}=\frac{am^2+bn^2+cp^2}{\frac{1}{m}+\frac{1}{n}+\frac{1}{p}}=am^2+bn^2+cp^2\) \(\left(TCDTSBN\right)\left(2\right)\)
Từ \(\left(1\right);\left(2\right)\Rightarrow\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}=\sqrt[3]{k}\)
cách khác nhé:
Đặt: \(am^3=bn^3=cp^3=k^3\)
\(\Rightarrow\)\(a=\frac{k^3}{m^3};\)\(b=\frac{k^3}{n^3};\)\(c=\frac{k^3}{p^3}\)
Ta có:
\(VT=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
\(=\sqrt[3]{\frac{k^3}{m^3}}+\sqrt[3]{\frac{k^3}{n^3}}+\sqrt[3]{\frac{k^3}{p^3}}\)
\(=\frac{k}{m}+\frac{k}{n}+\frac{k}{p}=k\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)=k\) (do 1/m + 1/n + 1/p = 1)
\(VP=\sqrt[3]{am^2+bn^2+cp^2}\)
\(=\sqrt[3]{\frac{k^3}{m^3}.m^2+\frac{k^3}{n^3}.n^2+\frac{k^3}{p^3}.p^2}\)
\(=\sqrt[3]{k^3\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)}=\sqrt[3]{k^3}=k\) (do 1/m + 1/n + 1/p = 1)
suy ra: \(VT=VP=k\) (đpcm)
Cho am3= bn3 = cp3 và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=1\). Chứng ming rằng : \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cn^2}\)
\(A=\sqrt[3]{am^2+bn^2+cp^2}=\sqrt[3]{\frac{am^3}{m}+\frac{bn^3}{n}+\frac{cp^3}{p}}=\sqrt[3]{am^3\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)}\)
\(\Rightarrow A=\sqrt[3]{am^3}=m\sqrt[3]{a}\Rightarrow\frac{A}{m}=\sqrt[3]{a}\)
Tương tự :.. \(\Rightarrow A\left(\frac{1}{m}+\frac{1}{p}+\frac{1}{n}\right)=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
Cho \(am^3=bn^3=cp^3\) và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=1\)
CMR: \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}\)
Đặt \(am^3=bn^3=cp^3=k^3\)
\(\Rightarrow\)\(a=\frac{k^3}{m^3};\) \(b=\frac{k^3}{n^3};\) \(c=\frac{k^3}{p^3}\)
Ta có: \(VT=\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\)
\(=\sqrt[3]{\frac{k^3}{m^3}}+\sqrt[3]{\frac{k^3}{n^3}}+\sqrt[3]{\frac{k^3}{p^3}}\)
\(=\frac{k}{m}+\frac{k}{n}+\frac{k}{p}=k\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)=k\)
\(VP=\sqrt[3]{am^2+bn^2+cp^2}\)
\(=\sqrt[3]{\frac{k^3}{m}+\frac{k^3}{n}+\frac{k^3}{p}}\)
\(=\sqrt[3]{k^3\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)}\)
\(=\sqrt[3]{k^3}=k\)
suy ra: đpcm
bài này ở trong Sách nâng cao và phát triển toán 9 tập 1 của ông Vũ Hữu Bình ý
Áp dụng BĐT Holder ta có:
\(\left(am^2+bn^2+cp^2\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}\right)\)
\(\ge\left(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}\right)^3\)
Suy ra ĐPCM
Dấu "=" xảy ra khi \(am^3=bn^3=cp^3\)
1) Tìm số nguyên n thỏa:
\(\sqrt[3]{n+\sqrt{n^2+27}}+\sqrt[3]{n^2+27}=4\)
2) Cho \(am^3=bn^3=cp^3\)và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=1\)
Chứng minh rằng:
\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}\)
Làm ơn giúp mình với nhé, mình cảm ơn rất nhiều và sẽ hậu hạ tick nhé!
À mình viết lộn đề câu 1, co mình sửa lại nhá!
1) Tìm số nguyên n thỏa:
\(\sqrt[3]{n+\sqrt{n^2+27}}+\sqrt[3]{n-\sqrt{n^2+27}}=4\)
Khi đó nếu bỏ chữ số tận cùng thì số mới là abc
Ta có:
abc3 - abc = (1000a + 100b + 10c + 3) - (100a + 10b + c)
=> 900a + 90b + 9c + 3=1992
=> 900a + 90b + 9c=1989
=> 9(100a + 10b + c)=1989
=> 100a + 10b + c = 221
=> abc = 221
=> abc3 = 2213
Vậy số cần tìm là 2213
cho \(am^3=bn^3=cp^3\)và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=1\)
CMR: \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}\)
\(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=1\Leftrightarrow\)\(\frac{mn+np+mp}{mnp}=1\Leftrightarrow mn+np+mp=mnp\)
Ta có: \(am^3=bn^3=cp^3\Leftrightarrow\)\(\sqrt[3]{am^3}=\sqrt[3]{bn^3}=\sqrt[3]{cp^3}\)\(\Leftrightarrow\sqrt[3]{a}m=\sqrt[3]{b}n=\sqrt[3]{c}p\)
\(\frac{\sqrt[3]{a}m}{mnp}=\frac{\sqrt[3]{b}n}{mnp}=\frac{\sqrt[3]{c}p}{mnp}\Leftrightarrow\)\(\frac{\sqrt[3]{a}}{np}=\frac{\sqrt[3]{b}}{mp}=\frac{\sqrt[3]{c}}{mn}\Leftrightarrow\)\(\frac{\sqrt[3]{a}}{np}=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{mn+np+mp}\Leftrightarrow\)\(\frac{\sqrt[3]{a}}{np}=\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{mnp}\Leftrightarrow\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{a}m\)
Mặt khác: \(am^3=bn^3=cp^3\Leftrightarrow\)\(\frac{am^3}{mnp}=\frac{bn^3}{mnp}=\frac{cp^3}{mnp}\Leftrightarrow\)\(\frac{am^2}{np}=\frac{bn^2}{mp}=\frac{cp^2}{mn}\Leftrightarrow\)
\(\frac{am^2}{np}=\frac{am^2+bn^2+cp^2}{mn+np+mp}=\frac{am^2+bn^2+cp^2}{mnp}\)\(\Leftrightarrow am^2+bn^2+cp^2=am^3\Leftrightarrow\sqrt[3]{am^2+bn^2+cp^2}=\sqrt[3]{a}m\)
Vậy =>dpcm
🎶 Cho am3=bn3=cp3 và \(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}=1\) . Chứng minh rằng :
\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}\)
1)cho \(am^3=bn^3=cp^3\)và \(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}=8\)
Chứng minh rằng : \(\frac{\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}}{4}=\sqrt[3]{am^2+bn^2+cp^2}\)
2)Tìm giá trị lớn nhất của biểu thức \(B=\frac{x}{2}+\sqrt{1-x-2x^2}\)
b) cho x ,y là số thực thỏa mãn \(y^2=1-4x^2\).Tìm giá trị lớn nhất và nhỏ nhất
của \(A=\frac{2x+3y}{2x+y+2}\)
Cho tam giác ABC , O nằm trong tam giác đó. Các tia AO,BO,CO cắt BC,CA,AB tại M,N,P. Chứng minh rằng:
\(\sqrt{\frac{OA}{OM}}+\sqrt{\frac{OB}{ON}}+\sqrt{\frac{OC}{OP}}\ge3\sqrt{2}\)
\(\sqrt{\frac{AM}{OA}}+\sqrt{\frac{BN}{OB}}+\sqrt{\frac{CP}{OC}}\ge\frac{3\sqrt{6}}{2}\)
\(\sqrt{\frac{OM}{AM}}+\sqrt{\frac{ON}{BN}}+\sqrt{\frac{OP}{CP}}\ge\sqrt{3}\)
Đã chứng minh:
\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\)
\(\frac{OA}{AM}+\frac{OB}{ON}+\frac{OC}{OP}\ge6\)
\(\frac{AM}{OA}+\frac{BN}{OB}+\frac{CP}{OC}\ge\frac{9}{2}\)
\(\frac{OM}{OA}+\frac{ON}{OB}+\frac{OP}{OC}\ge\frac{3}{2}\)
( bài toán cực trị trong hình học).
a. Đặt \(S_{AOB}=c^2;S_{BOC}=a^2;S_{COA}=b^2\Rightarrow S_{ABC}=a^2+b^2+c^2\)
Ta có \(\frac{AM}{OM}=\frac{S_{ABC}}{S_{BOC}}=\frac{a^2+b^2+c^2}{a^2}=1+\frac{b^2+c^2}{a^2}\)
Vậy thì \(\frac{OA}{OM}=\frac{AM}{OM}-1=\frac{b^2+c^2}{a^2}\Rightarrow\sqrt{\frac{OA}{OM}}=\sqrt{\frac{b^2+c^2}{a^2}}\ge\frac{1}{\sqrt{2}}\left(\frac{b}{a}+\frac{a}{b}\right)\)
Tương tự, ta có: \(\sqrt{\frac{OA}{OM}}+\sqrt{\frac{OB}{ON}}+\sqrt{\frac{OC}{OP}}\ge\frac{1}{\sqrt{2}}\left(\frac{a}{b}+\frac{c}{b}+\frac{a}{c}+\frac{b}{c}+\frac{b}{a}+\frac{c}{a}\right)\ge\frac{1}{\sqrt{2}}.6=3\sqrt{2}\)
Cho am3 = bn3 = cp3 và \(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}=1\)
CMR: \(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\sqrt[3]{am^2+bn^2+cp^2}\)
đặt \(am^3=bn^3=cp^3=k^3\)
\(\Rightarrow a=\dfrac{k^3}{m^3};b=\dfrac{k^3}{n^3};c=\dfrac{k^3}{p^3}\)
VT=\(\sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}=\dfrac{k}{m}+\dfrac{k}{n}+\dfrac{k}{p}=k\)
VF=\(\sqrt[3]{\dfrac{k^3}{m}+\dfrac{k^3}{n}+\dfrac{k^3}{p}}=\sqrt[3]{k^3}=k\)
do đó VT=VF, đẳng thức được chứng minh