Tìm số nguyên x để các phân số sau là số nguyên:
\(\frac{2x-1}{3x+2}\)
Tìm x nguyên để các phân số sau là số nguyên
\(\frac{-3}{x-1};\frac{-4}{2x-1};\frac{3x+7}{x-1};\frac{4x-1}{3-x}\)
\(\frac{-3}{x-1}\)nguyên khi và chỉ khi -3 chia hết cho x - 1 hay x - 1 là ước của 3
\(\frac{-4}{2x-1}\)nguyên khi và chỉ khi -4 chia hết cho 2x - 1 hay 2x - 1 là ước của 4
Lấy 3x + 7 chia x - 1 => \(\frac{4}{x-1}\)nguyên khi và chỉ khi 4 chia hết cho x - 1 hay x - 1 là ước của 4
Mk chỉ làm đc vậy thui à!!!!!
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
ĐKXĐ: \(x\ne1\)
Ta có: \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
\(=\dfrac{x^4-2x^3+x^2-4x^2+8x-4+3}{x^2-2x+1}\)
\(=\dfrac{x^2\left(x^2-2x+1\right)-4\left(x^2-2x+1\right)+3}{x^2-2x+1}\)
\(=\dfrac{\left(x-1\right)^2\cdot\left(x^2-4\right)+3}{\left(x-1\right)^2}\)
\(=x^2-4+\dfrac{3}{\left(x-1\right)^2}\)
Để B nguyên thì \(3⋮\left(x-1\right)^2\)
\(\Leftrightarrow\left(x-1\right)^2\inƯ\left(3\right)\)
\(\Leftrightarrow\left(x-1\right)^2\in\left\{1;3;-1;-3\right\}\)
mà \(\left(x-1\right)^2>0\forall x\) thỏa mãn ĐKXĐ
nên \(\left(x-1\right)^2\in\left\{1;3\right\}\)
\(\Leftrightarrow x-1\in\left\{1;9\right\}\)
hay \(x\in\left\{2;10\right\}\) (nhận)
Vậy: \(x\in\left\{2;10\right\}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
\(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
Tìm các giá trị nguyên của x để phân thức sau có giá trị là số nguyên:
a) \(B=\dfrac{x^4-2x^3-3x^2+8x-1}{x^2-2x+1}\)
Tìm các số nguyên để các số sau đây là 1 số nguyên
A =\(\frac{2x-5}{x+1}\)
B =\(\frac{x+1}{3x+1}\)
a) Ta có: \(A=\frac{2x-5}{x+1}=\frac{\left(2x+2\right)-7}{x+1}=2-\frac{7}{x+1}\)
Để A nguyên => \(\frac{7}{x+1}\inℤ\) => \(\left(x+1\right)\inƯ\left(7\right)=\left\{\pm1;\pm7\right\}\)
=> \(x\in\left\{-8;-2;0;6\right\}\)
b) Ta có: \(B=\frac{x+1}{3x+1}\) => \(3B=\frac{3x+3}{3x+1}=\frac{\left(3x+1\right)+2}{3x+1}=1+\frac{2}{3x+1}\)
Để B nguyên => \(\frac{2}{3x+1}\inℤ\Rightarrow\left(3x+1\right)\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
=> \(3x\in\left\{-3;-2;0;1\right\}\) => \(x\in\left\{-1;-\frac{2}{3};0;\frac{1}{3}\right\}\)
Mà x nguyên => \(x\in\left\{-1;0\right\}\)
Thử lại ta thấy đều thỏa mãn
Vậy \(x\in\left\{-1;0\right\}\)
Ta có : \(\frac{2x-5}{x+1}=\frac{2x+2-7}{x+1}=\frac{2\left(x+1\right)-7}{x+1}=2-\frac{7}{x+1}\)
Vì \(2\inℤ\Rightarrow\frac{-7}{x+1}\inℤ\Rightarrow-7⋮x+1\Rightarrow x+1\inƯ\left(-7\right)\Rightarrow x+1\in\left\{1;7;-1;-7\right\}\)
=> \(x\in\left\{0;6;-2;-8\right\}\)
Vậy \(x\in\left\{0;6;-2;-8\right\}\)
b) Để B nguyên
=> 3B nguyên
Khi đó 3B = \(\frac{3\left(x+1\right)}{3x+1}=\frac{3x+3}{3x+1}=\frac{3x+1+2}{3x+1}=1+\frac{2}{3x+1}\)
Vì \(1\inℤ\Rightarrow\frac{2}{3x+1}\inℤ\Rightarrow2⋮3x+1\Rightarrow3x+1\inƯ\left(2\right)\Rightarrow3x+1\in\left\{1;2;-2;-1\right\}\)
=> \(3x\in\left\{0;1;-3;-2\right\}\Rightarrow x\in\left\{0;\frac{1}{3};-1;\frac{-2}{3}\right\}\)
Vì x nguyên
=> \(x\in\left\{0;-1\right\}\)
Vậy \(x\in\left\{0;-1\right\}\)
a, \(A=\frac{2x-5}{x+1}=\frac{2\left(x+1\right)-7}{x+1}=\frac{-7}{x+1}\)
\(\Leftrightarrow x+1\inƯ\left(-7\right)=\left\{\pm1;\pm7\right\}\)
| x + 1 | 1 | -1 | 7 | -7 |
| x | 0 | -2 | 6 | -8 |
b, \(B=\frac{x+1}{3x+1}=\frac{3x+3}{3x+1}=\frac{2}{3x+1}\)
\(\Leftrightarrow3x+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
| 3x + 1 | 1 | -1 | 2 | -2 |
| 3x | 0 | -2 | 1 | -3 |
| x | 0 | -2/3 | 1/3 | -1 |
Tìm các số nguyên x để các phân thức sau nhận giá trị nguyên:
a. 5x+11 (tử số) / 2x+3 (mẫu số)
b. 5x-4 (tử số) / 3x-1 (mẫu số)
c. 5x/3x+2
d. 7x+7/4x+3
e. 2x^2-x+2/x^2-x+2
a: ĐKXĐ: x<>-3/2
Để \(\frac{5x+11}{2x+3}\) là số nguyên thì \(5x+11\vdots2x+3\)
=>\(10x+22\vdots2x+3\)
=>\(10x+15+7\vdots2x+3\)
=>7⋮2x+3
=>2x+3∈{1;-1;7;-7}
=>2x∈{-2;-4;4;-10}
=>x∈{-1;-2;2;-5}
b: ĐKXĐ: x<>1/3
Để \(\frac{5x-4}{3x-1}\) là số nguyên thì 5x-4⋮3x-1
=>15x-12⋮3x-1
=>15x-5-7⋮3x-1
=>-7⋮3x-1
=>3x-1∈{1;-1;7;-7}
=>3x∈{2;0;8;-6}
=>x∈\(\left\lbrace\frac23;0;\frac83;-2\right\rbrace\)
mà x nguyên
nên x∈{0;-2}
c: ĐKXĐ: x<>-2/3
Để \(\frac{5x}{3x+2}\) là số nguyên thì 5x⋮3x+2
=>15x⋮3x+2
=>15x+10-10⋮3x+2
=>-10⋮3x+2
=>3x+2∈{1;-1;2;-2;5;-5;10;-10}
=>3x∈{-1;-3;0;-4;3;-7;8;-12}
=>x∈{-1/3;-1;0;-4/3;1;-7/3;8/3;-4}
mà x nguyên
nên x∈{-1;0;1;-4}
d:
ĐKXĐ: x<>-3/4
Để \(\frac{7x+7}{4x+3}\) là số nguyên thì 7x+7⋮4x+3
=>28x+28⋮4x+3
=>28x+21+7⋮4x+3
=>7⋮4x+3
=>4x+3∈{1;-1;7;-7}
=>4x∈{-2;-4;4;-10}
=>x∈\(\left\lbrace-\frac12;-1;1;-\frac52\right\rbrace\)
mà x nguyên
nên x∈{-1;1}
e: ĐKXĐ: x∈R
Để \(\frac{2x^2-x+2}{x^2-x+2}\) là số nguyên thì \(2x^2-x+2\vdots x^2-x+2\)
=>\(2x^2-2x+4+x-2\vdots x^2-x+2\)
=>\(x-2\vdots x^2-x+2\)
=>\(\left(x-2\right)\left(x+1\right)\vdots x^2-x+2\)
=>\(x^2-x-2\vdots x^2-x+2\)
=>\(x^2-x+2-4\vdots x^2-x+2\)
=>\(-4\vdots x^2-x+2\)
mà \(x^2-x+2=\left(x-\frac12\right)^2+\frac74\ge\frac74\forall x\)
nên \(x^2-x+2\in\left\lbrace2;4\right\rbrace\)
TH1: \(x^2-x+2=2\)
=>\(x^2-x=0\)
=>x(x-1)=0
=>\(\left[\begin{array}{l}x=0\\ x=1\end{array}\right.\)
Thay lại vào phân số, ta thấy x=0 thỏa mãn
TH2: \(x^2-x+2=4\)
=>\(x^2-x-2=0\)
=>(x-2)(x+1)=0
=>\(\left[\begin{array}{l}x=2\\ x=-1\end{array}\right.\)
Thay lại vào phân số, ta thấy x=2 thỏa mãn
Vậy: x∈{0;2}
Tìm các số nguyên x để các phân thức sau nhận giá trị nguyên:
a. 5x+11 (tử số) / 2x+3 (mẫu số)
b. 5x-4 (tử số) / 3x-1 (mẫu số)
c. 5x/3x+2
d. 7x+7/4x+3
e. 2x^2-x+2/x^2-x+2
Không biết mẫu số và x như thế nào? Bạn xem lại
Tìm x nguyên để các phân số sau là số nguyên
a)\(\frac{-3}{x-1}\)b)\(\frac{-4}{2x-1}\)c)\(\frac{3x+7}{x-1}\)d)\(\frac{4x-1}{3-x}\)
1, Tìm x nguyên để phân số sau là số nguyên:
\(\frac{3x+7}{x-1}\)
2, Tìm x nguyên để các biểu thức sau đạt GTLN
\(P=2010-\left(x+1\right)^{2008};Q=1010-|3-x|;C=\frac{5}{\left(x-3\right)^2+1};D=\frac{4}{|x-2|+2}\)
1 Giải :
\(\frac{3x+7}{x-1}\)là phân số <=> x - 1 \(\ne\)0 => x \(\ne\)1
Ta có : \(\frac{3x+7}{x-1}=\frac{3\left(x-1\right)+8}{x-1}=3+\frac{8}{x-1}\)
Để \(\frac{3x+7}{x-1}\)là số nguyên thì 8 \(⋮\)x - 1 => x - 1 \(\in\)Ư(1; -1; 2; -2; 4; -4; 8; -8}
Lập bảng :
| x - 1 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
| x | 2 | 0 | 3 | -1 | 5 | -3 | 9 | -7 |
Vậy x \(\in\){2; 0; 3; -1; 5; -3; 9; -7} thì \(\frac{3x+7}{x-1}\)là số nguyên
Đặt \(A=\frac{3x+7}{x-1}\)
Ta có: \(A=\frac{3x+7}{x-1}=\frac{3x-3+10}{x-1}=\frac{3x-3}{x-1}+\frac{10}{x-1}=3+\frac{10}{x-1}\)
Để \(A\in Z\)thì \(\frac{10}{x-1}\in Z\Rightarrow10⋮x-1\Leftrightarrow x-1\in U\left(10\right)=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
Ta có bảng sau:
| \(x-1\) | \(1\) | \(-1\) | \(2\) | \(-2\) | \(5\) | \(-5\) | \(10\) | \(-10\) |
| \(x\) | \(2\) | \(0\) | \(3\) | \(-1\) | \(6\) | \(-4\) | \(11\) | \(-9\) |
Vậy, với \(x\in\left\{-9;-4;-1;0;2;3;6;11\right\}\)thì \(A=\frac{3x+7}{x-1}\in Z\)
a, Ta có: \(-\left(x+1\right)^{2008}\le0\)
\(\Rightarrow P=2010-\left(x+1\right)^{2008}\le2010\)
Dấu " = " khi \(\left(x+1\right)^{2008}=0\Rightarrow x+1=0\Rightarrow x=-1\)
Vậy \(MAX_P=2010\Leftrightarrow x=-1\)