Tính giá trị của B:
B=1*2*3+2*3*4+3*4*5+...+97*98*99
Tính giá trị các biểu thức sau:
a) A = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100
b) B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100
a)
C = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = 1 − 2 + 3 − 4 + ... + 97 − 98 + 99 − 100 = − 1 + − 1 + ... + − 1 + − 1 = − 1.50 = − 50.
b)
B = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
Tính giá trị của biểu thức sau.
S = ( 1 + 2+ 3 + 4+..................+ 96 + 97 + 98 + 99 ) : 5
S=(1+2+3+4+...+96+97+98+99):5
S=(99x(99+1):2):5
S=(99x100:2):5
S=(9900:2):5
S=4950:5
S=990
(1+2+3+4+...+96+97+98+99):5
Đặt 1+2+3+4+...+96+97+98+99=A1+2+3+4+...+96+97+98+99=S
Số số hạng của S là:
(99−1):1+1=99(99-1):1+1=99
Tổng của S là:
(99+1).99:2=4950(99+1).99:2=4950
→(1+2+3+4+...+96+97+98+99):5→(1+2+3+4+...+96+97+98+99):5
=4950:5=990
Tính giá trị biểu thức A , biết rằng A = M : N
Mà M = \(\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
N = \(\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
Ta có: \(M=\dfrac{\dfrac{1}{99}+\dfrac{2}{98}+\dfrac{3}{97}+\dfrac{4}{96}+...+\dfrac{97}{3}+\dfrac{98}{2}+\dfrac{99}{1}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{99}\right)+\left(1+\dfrac{2}{98}\right)+\left(1+\dfrac{3}{97}\right)+\left(1+\dfrac{4}{96}\right)+...+\left(1+\dfrac{98}{2}\right)+1}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
\(=\dfrac{\dfrac{100}{99}+\dfrac{100}{98}+\dfrac{100}{97}+...+\dfrac{100}{1}+\dfrac{100}{2}}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6}+...+\dfrac{1}{100}}\)
=100
Ta có: \(N=\dfrac{92-\dfrac{1}{9}-\dfrac{2}{10}-\dfrac{3}{11}-...-\dfrac{90}{98}-\dfrac{91}{99}-\dfrac{92}{100}}{\dfrac{1}{45}+\dfrac{1}{50}+\dfrac{1}{55}+...+\dfrac{1}{495}+\dfrac{1}{500}}\)
\(=\dfrac{\left(1-\dfrac{1}{9}\right)+\left(1-\dfrac{2}{10}\right)+\left(1-\dfrac{3}{11}\right)+...+\left(1-\dfrac{90}{98}\right)+\left(1-\dfrac{91}{99}\right)+\left(1-\dfrac{92}{100}\right)}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{\dfrac{8}{9}+\dfrac{8}{10}+\dfrac{8}{11}+...+\dfrac{8}{99}+\dfrac{8}{100}}{\dfrac{1}{5}\left(\dfrac{1}{9}+\dfrac{1}{10}+\dfrac{1}{11}+...+\dfrac{1}{99}+\dfrac{1}{100}\right)}\)
\(=\dfrac{8}{\dfrac{1}{5}}=40\)
\(\Leftrightarrow\dfrac{M}{N}=\dfrac{100}{40}=\dfrac{5}{2}\)
Tính giá trị biểu thức của
2+3+4+5+......+96+97+98+99+100+101
Tổng trên có giá trị là :
Số số hạng là :
\(\left(101-2\right):1+1=100\)
Tổng trên có giá trị là :
\(\dfrac{\left(101+2\right).100}{2}=5150\)
A= 2 + 3+4+...+96+97+98+99+100+101
Khoảng cách của dãy số trên là: 3-2 =1
Số số hạng của dãy số trên là: (101 - 2): 1 + 1 = 100 (số hạng)
Tổng A là: A = (101+2)\(\times\) 100 : 2 =5150
Đáp số: 5150
tính giá trị biểu thức 1-2+3-4+5-6+...+97-98+99-100+101
\(1-2+3-4+5-6+.......+97-98+99-100+101\)
\(=\left(1-2\right)+\left(3-4\right)+\left(4-5\right)+.....+\left(97-98\right)+\left(99-100\right)+101\)
\(=50.\left(-1\right)+101=51\)
Tính giá trị biểu thức sau:
D = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100
D = 1 − 2 − 3 + 4 + 5 − 6 − 7 + ... + 97 − 98 − 99 + 100 = 1 − 2 + − 3 + 4 + 5 − 6 + ... + 97 − 98 + − 99 + 100 = − 1 + 1 + − 1 + ... + − 1 + 1 = − 1 + 1 + − 1 + 1 + ... + − 1 + 1 − 1 = 0 + 0 + ... + 0 − 1 = − 1.
tính giá trị biểu thức:
M=(1+2+3+4+.............+96+97+98+99):5
Tính giá trị của biểu thức :
A=1/1*2*3+1/2*3*4+...+1/98*99*100
B=1/1*2*3*4+1/2*3*4*5+...+1/27*28*29*30
C=1*3+2*3+3*5+...+97*99+98*100
D=1*2*3+2*3*4+3*4*5+...+48*49*50
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{98.99.100}\)
\(A=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{98.99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(A=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{9900}\right)\)
\(A=\frac{1}{2}.\frac{4949}{9900}\)
\(A=\frac{4949}{19800}\)
tính giá trị biểu thức 1-2+3-4+5-6+...+97-98+99-100+101
1 - 2 + 3 - 4 + 5 - 6 + ...+..+97 - 98 + 99 - 100 + 101
= 1 + 0 + 0 + 0 + .. + ( - 101 )
= 1 + ( - 101 )
= 100
k mk nha
= \(1+0+0+0+...+\left(-101\right)\)
\(=1+\left(-101\right)\)
\(=-100\)
lan hương sai rồi kìa