Cho x,y,z là các số thực dương thõa mãn x+y+z=3.Tìm GTNN của P=x4+2y4+3z4
Cho các số thực dương x, y, z và thỏa mãn x + y + z = 3. Biểu thức P = x 4 + y 4 + 8 z 4 đạt GTNN bằng a b , trong đó a, b là các số tự nhiên dương, a b là phân số tối giản. Tính a - b
A. 234.
B. 523.
C. 235.
D. 525.
cho x,y,z là các số thực dương thỏa mãn x,y,z>0 thỏa mãn x(x-z)+y(y-z) =0 tìm GTNN của \(P=\frac{x^3}{x^2+z^2}+\frac{y^3}{y^2+z^2}+\frac{x^2+y^2+4}{x+y}\)
\(x\left(x-z\right)+y\left(y-z\right)=0\)\(\Leftrightarrow\)\(x^2+y^2=z\left(x+y\right)\)
\(\frac{x^3}{z^2+x^2}=x-\frac{z^2x}{z^2+x^2}\ge x-\frac{z^2x}{2zx}=x-\frac{z}{2}\)
\(\frac{y^3}{y^2+z^2}=y-\frac{yz^2}{y^2+z^2}\ge y-\frac{yz^2}{2yz}=y-\frac{z}{2}\)
\(\frac{x^2+y^2+4}{x+y}=\frac{z\left(x+y\right)+4}{x+y}=z-x-y+\frac{4}{x+y}+x+y\ge z-x-y+4\)
Cộng lại ra minP=4, dấu "=" xảy ra khi \(x=y=z=1\)
Cho các số thực dương x,y,z thỏa mãn xyz ≥ 1.Tìm GTNN của \(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)
\(x,y,z>0\)
Áp dụng BĐT Caushy cho 3 số ta có:
\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)
\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)
\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)
Áp dụng BĐT Caushy-Schwarz ta có:
\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)
\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)
\(P=0\Leftrightarrow x=y=z=1\)
Vậy \(P_{min}=0\)
Cho số dương x,y,z thõa mãn xy+yz+zx=12 . Tìm GTNN của M x4+y4+z4
câu 1 tìm x,y nguyên dương thõa mãn xy+x-y=4
câu 2: cho x,y,z là số nguyên dương và x+y+z là số lẻ các số thực a,b,c thõa mãn \(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)chứng minh rằng a=b=c
Câu 1: xy + x - y = 4
<=> (xy + x) - (y+ 1) = 3
<=> x(y+1) - (y + 1) = 3
<=> (y + 1) (x - 1) = 3
Theo bài ra cần tìm các số nguyên dương x, y => Xét các trường hợp y + 1 nguyên dương và x -1 nguyên dương.
Mà 3 = 1 x 3 => Chỉ có thể xảy ra các trường hợp sau:
* TH1: y + 1 = 1; x - 1 = 3 => y = 0; x = 4 (loại vì y = 0)
* TH2: y + 1 = 3; x -1 = 1 => y = 2; x = 2 (t/m)
Vậy x = y = 2.
Câu 2:
Ta có:
(a - b)/x = (b-c)/y = (c-a)/z =(a-b + b -c + c - a) (x + y + z) = 0
Vì x; y; z nguyên dương => a-b =0; b - c = 0; c- a =0 => a = b = c
\(\frac{a-b}{x}=\frac{b-c}{y}=\frac{c-a}{z}\)
Cho x,y,z là số thực dương thõa mãn x+y+z=1.Tìm giá trị lớn nhất của biểu thức \(Q=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
Ta sẽ c/m: \(\frac{x}{x+1}\le\frac{9}{16}x+\frac{1}{16}\)
\(\Leftrightarrow\frac{x}{x+1}-\frac{9}{16}x-\frac{1}{16}\le0\)
\(\Leftrightarrow\frac{-\left(3x-1\right)^2}{16\left(x+1\right)}\le0\) (đúng)
Thiết lập tương tự hai BĐT còn lại và cộng theo vế ta được: \(Q\le\frac{9}{16}\left(x+y+z\right)+\frac{3}{16}=\frac{9}{16}+\frac{3}{16}=\frac{3}{4}\)
Vậy Q max = 3/4 khi x = y =z =1/3
sao lại viết thế kia
học tốt nha
Cách tth_new UCT khá gọn nhưng t có cách đẹp không kém :))
\(3-Q=\left(1-\frac{x}{x+1}\right)+\left(1-\frac{y}{y+1}\right)+\left(1-\frac{z}{z+1}\right)\)
\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\)
\(\ge\frac{9}{x+y+z+3}=\frac{9}{4}\)
\(\Rightarrow Q\le\frac{3}{4}\)
Đẳng thức xảy ra tại x=y=z=1/3
Cho x,y,z là các số thực dương thỏa mãn: x^2+y^2+z^2=2.Tìm GTNN và GTLN của P=\(\dfrac{x}{2+yz}+\dfrac{y}{2+zx}+\dfrac{z}{2+xy}\)
Ta thấy
72
=
2
3
.
3
2
72=2
3
.3
2
nên a, b có dạng
{
�
=
2
�
3
�
�
=
2
�
.
3
�
{
a=2
x
3
y
b=2
z
.3
t
với
�
,
�
,
�
,
�
∈
N
x,y,z,t∈N và
�
�
�
{
�
,
�
}
=
3
;
�
�
�
{
�
,
�
}
=
2
max{x,z}=3;max{y,t}=2.
Theo đề bài, ta có
2
�
.
3
�
+
2
�
.
3
�
=
42
2
x
.3
y
+2
z
.3
t
=42
⇔
2
�
−
1
.
3
�
−
1
+
2
�
−
1
3
�
−
1
=
7
⇔2
x−1
.3
y−1
+2
z−1
3
t−1
=7 (*), do đó
�
,
�
,
�
,
�
≥
1
x,y,z,t≥1
TH1:
�
≥
�
,
�
≤
�
x≥z,y≤t. Khi đó
�
=
3
,
�
=
2
x=3,t=2. (*) thành:
4.
3
�
−
1
+
3.
2
�
−
1
=
7
4.3
y−1
+3.2
z−1
=7
⇔
�
=
�
=
1
⇔y=z=1
Vậy
{
�
=
24
�
=
18
{
a=24
b=18
(nhận)
TH2: KMTQ thì giả sử
�
≥
�
,
�
≥
�
x≥z,y≥t. Khi đó
�
=
3
,
�
=
2
x=3,z=2. (*) thành
4.
3
�
−
1
+
2.
3
�
−
1
=
7
4.3
y−1
+2.3
t−1
=7, điều này là vô lí.
Vậy
(
�
,
�
)
=
(
24
,
18
)
(a,b)=(24,18) hay
(
18
,
24
)
(18,24) là cặp số duy nhất thỏa yêu cầu bài toán.
Cho x,y,z thực dương thõa mãn x+y+z = 3.
Tìm GTNN của T = √(x2+1/x2+1/y2) + √(y2+1/y2+1/z2) + √(z2+1/x2+1/z2).
voi x,y,z>0 ta co
ap dung bdt co si ta co
\(T>=3\sqrt[3]{\sqrt{\left(\frac{x^2+1}{x^2}+\frac{1}{y^2}\right)\left(\frac{y^2+1}{y^2}+\frac{1}{z^2}\right)\left(\frac{z^2+1}{z^2}+\frac{1}{x^2}\right)}}\)
=\(3\sqrt[3]{\sqrt{\left(1+\frac{1}{x^2}+\frac{1}{y^2}\right)\left(1+\frac{1}{y^2}+\frac{1}{z^2}\right)\left(1+\frac{1}{z^2}+\frac{1}{x^2}\right)}}\)
>=\(3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{1}{x^2y^2}}.3\sqrt[3]{\frac{1}{y^2z^2}}.3\sqrt[3]{\frac{1}{x^2z^2}}}}=3\sqrt[3]{\sqrt{27\sqrt[3]{\frac{1}{\left(xyz\right)^4}}}}\)
=\(3\sqrt[3]{\sqrt{27.\frac{1}{xyz}.\sqrt[3]{\frac{1}{xyz}}}}=3\sqrt{3}.\sqrt[9]{\frac{1}{\left(xyz\right)^2}}\)
ap dung bdt co si ta co
\(x+y+z>=3\sqrt[3]{xyz}\)
<=>3>=\(3\sqrt[3]{xyz}\left(dox+y+z=3\right)\)
<=>xyz<=1
<=>1/xyz>=1
<=>\(\sqrt[9]{\frac{1}{\left(xyz\right)^2}}>=1\)
do do T>=\(3\sqrt{3}\)
dau = xay ra <=>x=y=z=1
cho các số thực dương x,y,z thỏa mãn x+y+z=3 tìm gtnn của bt P=\(\frac{1}{x^2+x}+\frac{1}{y^2+y}+\frac{1}{z^2+z}\)
\(P=\frac{1}{x\left(x+1\right)}+\frac{1}{y\left(y+1\right)}+\frac{1}{z\left(z+1\right)}\)
\(\ge3\sqrt[3]{\frac{1}{xyz\left(x+1\right)\left(y+1\right)\left(z+1\right)}}\)
Mà theo BĐT AM - GM ta có tiếp:
\(xyz\le\left(\frac{x+y+z}{3}\right)^3=1\)
\(\left(x+1\right)\left(y+1\right)\left(z+1\right)\le\left(\frac{x+y+z+3}{3}\right)^3=8\)
\(\Rightarrow P\le\frac{3}{2}\)
Đẳng thức xảy ra tại x=y=z=1
Vậy..................