5x ^2 +4y^2 - 4xy + 4y +2x +3
Tim Min
tim min k=5x^2+4y^2-4xy+4y+2x+3
k =(2x-y)2 + (x+1)2 +( y +2)2 +2y2 -5+3
gtnn k = -2
Ta có K = (x2 + 4y2 + 1 - 4xy - 2x + 4y) + (4x2 + 4x + 1) + 1 = (2y - x + 1)2 + (2x + 1)2 + 1 >= 1
Vậy GTNN là -1 đạt được tại x = -0,5; y = - 0,25
tim da thuc f(x) roi tim nghiem cua f(x) biet rang:x^3+2x^2(4y-1)-4xy^2-9y^3-f(x)=-5x^3+8x^2y-4xy^2-9y^3
tìm min
B=5x2+2y2+4xy-2x+4y+2005
Tìm Emin = 5x2 + 2y2 + 4xy - 2x + 4y +2010
\(E=4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+2005\)
\(=\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+2005\ge2005\)
\(E_{min}=2005\) khi \(\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
min x^2 + 4y^2 - 4xy + 2x - 4y + 9
Đặt \(P=x^2+4y^2-4xy+2x-4y+9\)
\(P=\left(x-2y\right)^2+2\left(x-2y\right)+1+8\)
\(P=\left(x-2y+1\right)^2+8\ge8\)
\(P_{min}=8\) khi \(x-2y+1=0\)
cho x khac 0 tim GTNN : B= 5x^2 +4xy+2y^2 - 2x + 4y +20
B= \(4x^2+4xy+y^2+x^2-2x+1+y^2+4y+4+15\)
= \(\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2+15\ge15\)
=> GTNN của B là 15
Tìm Min của biểu thức sau:
A = 5x2 + 2y2 + 4xy - 2x +4y +2005
Ta có: A = 5x2 + 2y2 + 4xy - 2x + 4y + 2005
= (4x2+ 4xy+y2 ) + ( x2 - 2x + 1) + (y2 + 4y + 2) + 2002
= (2x+y)2 + (x-1)2 + (y+2)2 +2002
Ta có: (2x+y)2>=0 V x,y. Dấu "=" XR khi 2x+y=0 <=> 2x=-y
(x-1)2 >=0 Vx. Dấu "=" XR khi x=1
((y+2)2 >=0 V y. Dấu "=" XR khi y=-2
Vậy A>=2002 V x,y. Dấu "=" XR khi 2x=-y; x=1; y=2 <=> (x,y)=(1;2)
Do đó Min A=2002 tại (x,y)=(1,2)
Kẻ Vô Danh: Em kết luận giá trị y sai nhé.
GTNN của A là 2002 khi x = 1, y = - 2.
Tìm Min
A=3x2+5x-2
B=x2+2y2-2xy-4y+5
C=2x2+4y2-4xy-4x-4y+2017
Ai đó giúp mình cái
\(A=3x^2+5x-2\)
\(A=3\left(x^2+\frac{5}{3}x-\frac{2}{3}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2-\frac{49}{36}\right)\)
\(A=3\left(x^2+2.\frac{5}{6}x+\left(\frac{5}{6}\right)^2\right)-\frac{49}{12}\)
\(A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\)
Vì \(3\left(x+\frac{5}{6}\right)^2\ge0\)
Do đó \(3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Dấu = xảy ra khi \(x+\frac{5}{6}=0\Rightarrow x=-\frac{5}{6}\)
Vậy Min A=\(-\frac{49}{12}\) khi x=\(-\frac{5}{6}\)
mk làm ý a thôi, mấy ý sau dựa vào mà làm.
A = \(3x^2+5x-2\)
=> \(\frac{A}{3}=x^2+\frac{5}{3}x-\frac{2}{3}\)(chia cả 2 vế cho 3)
\(\Leftrightarrow\frac{A}{3}=x^2+2.x.\frac{5}{6}+\left(\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Leftrightarrow\frac{A}{3}=\left(x+\frac{5}{6}\right)^2-\frac{49}{36}\)
\(\Rightarrow A=3\left(x+\frac{5}{6}\right)^2-\frac{49}{12}\ge-\frac{49}{12}\)
Đẳng thức xảy ra <=> x = - 5/6.
Vậy Min A = - 49/12 khi và chỉ khi x = - 5/6.
Rút gọn: \(\frac{2x^2-4xy}{x^2+4xy+4y^2}:\frac{4y^2-x^2}{x^2-4xy+4y^2}:\frac{5x^2y-10xy^2}{x^3+6x^2y+12xy^2+8y^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y-x\right)\left(2y+x\right)}{\left(x-2y\right)^2}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
Điều kiện: \(x\ne2y;x\ne-2y;x\ne0;y\ne0\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}:\frac{\left(2y+x\right)}{\left(x-2y\right)}:\frac{5xy\left(x-2y\right)}{\left(x+2y\right)^3}\)
\(=\frac{2x\left(x-2y\right)}{\left(x+2y\right)^2}\times\frac{x-2y}{x+2y}\times\frac{\left(x+2y\right)^3}{5xy\left(x-2y\right)}=\frac{2\left(x-2y\right)}{5y}\)