Cho x > 0. Tìm GTNN của C = x + 1/(4x) + x/((2x+1)^2)
Cho x > 0. Tìm GTNN của C = x + 1/(4x) + x/((2x+1)^2)
\(x>0\)
\(C=x+\dfrac{1}{4x}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\)
-Ta đặt \(A=T=4x^2+1;B=4x\) thì ta có:
\(A\ge B\Rightarrow A+T\ge B+T\) (do \(T>0\))\(\Rightarrow\dfrac{A+T}{B+T}\ge1\)
-Do đó: \(C=\dfrac{4x^2+1}{4x}+\dfrac{x}{\left(2x+1\right)^2}\ge\text{}\dfrac{4x^2+1+4x^2+1}{4x+4x^2+1}+\dfrac{x}{\left(2x+1\right)^2}=\dfrac{2\left(4x^2+1\right)}{\left(2x+1\right)^2}+\dfrac{8x}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=\dfrac{2\left(2x+1\right)^2}{\left(2x+1\right)^2}-\dfrac{7x}{\left(2x+1\right)^2}=2-\dfrac{7x}{\left(2x+1\right)^2}\)
-Áp dụng BĐT AM-GM ta có:
\(C\ge2-\dfrac{7x}{\left(2x+1\right)^2}\ge2-\dfrac{7x}{4.2x}=2-\dfrac{7}{8}=\dfrac{9}{8}\)
\(C=\dfrac{9}{8}\Leftrightarrow x=\dfrac{1}{2}\)
-Vậy \(C_{min}=\dfrac{9}{8}\)
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
Tìm GTNN của bt
A=2x^2-4x+10
B=2x^2+y^3+2xy+6x+2y+2015
C=(x-1)(x+2)+3x+5
D=4x+3/x^2+1
giúp mk nka 5 tk lun !!^_^
A)\(A=2.x^2-4.x+10\)
\(2A=4.x^2-8x+20\)
\(2A=4.x^2-2.2x.2+2^2+16\)
\(2A=\left(2x-2\right)^2+16\ge16\forall x\)
\(A=8\)
DẤU =XẢY RA KHI \(\left(2x-2\right)^2=0\leftrightarrow x=1\)
VẬY GTNN CỦA A LÀ 8 VỚI x=1
C)\(\left(x-1\right)\left(x+2\right)+3x+5\)
\(C=x^2+2x-x-2+3x+5\)
\(C=x^2+4x+3\)
\(4C=4x^2+16x+12\)
\(4C=4x^2+2.2x.4+4^2-4\)
\(4C=\left(2x+4\right)^2-4\ge-4\forall x\)
\(C=-1\)
DẤU = XẢY RA KHI\(\left(2x+4\right)^2=0\leftrightarrow x=-2\)
VẬY GTNN CỦA C LÀ -1 VỚI X=-2
XIN LỖI MÌNH CHỈ BIẾT LÀM 2 CÂU THÔI
Tìm GTNN của biểu thức
C=2x^2+5x-1
D=x^2+y^2+4x-6y+7
E=2x^3+y^2+2x+6y+2xy+14
Tìm GTNN của biểu thức
C=2x^2+5x-1
D=x^2+y^2+4x-6y+7
E=2x^3+y^2+2x+6y+2xy+14
a: \(C=2\left(x^2+\dfrac{5}{2}x-\dfrac{1}{2}\right)\)
\(=2\left(x^2+2\cdot x\cdot\dfrac{5}{4}+\dfrac{25}{16}-\dfrac{33}{16}\right)\)
\(=2\left(x+\dfrac{5}{4}\right)^2-\dfrac{33}{8}>=-\dfrac{33}{8}\)
Dấu '=' xảy ra khi x=-5/4
b: \(=x^2+4x+4+y^2-6y+9-6\)
\(=\left(x+2\right)^2+\left(y-3\right)^2-6>=-6\)
Dấu '=' xảy ra khi x=-2 và y=3
Tìm GTLN của C=-5x^2-4x+1
Tìm GTNN của B=2x^2+3x+1
Cho x;y;z > 0 thỏa mãn x + y + z = 2
Tìm GTNN của \(P=\sqrt{4x^2+\frac{1}{x^2}}+\sqrt{4y^2+\frac{1}{y^2}}+\sqrt{4z^2+\frac{1}{z^2}}\)
B1 :
cho pt : ( (5x-a)/6 ) - 1 = (2x+a)/5 - a/10 - 7(5-x)/ 28
1. giải pt với ẩn là x
2. Tìm a để x= -1
3. Tìm giá trị nguyên của a để 0<x<10
B2:
1. cho a+b+c+d = 0, cmr : a^3 + b^3 + c^3 + d^3 = 3(ab-cd)(c+d)
2. phân tích đa thức thành nhân tử : Q= ( x^2 + 4x + 8)^2 + 3x(x^2 + 4x + 8) + 2x^2
cho biểu thức \(P=\left(\frac{x-2}{x+1}+\frac{x^2+2x}{4-x^2}+\frac{x^2+4x-6}{x^2-x-2}\right)\left(x^4+4\right)\)
a) tìm ĐKXĐ và rút gọn biểu thức
b) tìm GTNN của P
c) tìm số tự nhiên x để P là số nguyên tố