Chứng minh:
\(\frac{3}{5}
a) Cho \(S=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+\frac{1}{60}\)
Chứng minh \(\frac{3}{5}< S< \frac{4}{5}\)
b) Chứng minh \(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+......+\frac{1}{100}>\frac{7}{10}\)
c) Chứng minh \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\) không là số tự nhiên d) Chứng minh \(\frac{1}{15}< D< \frac{1}{10}với\) \(D=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{99}{100}\)Bạn tham khảo ở link này nhé :
Chứng minh rằng: P = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}< \frac{5}{16}\)
\(P=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{99}{5^{99}}\)
\(5P=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{99}{5^{98}}\)
\(\Rightarrow4P=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}-\frac{99}{5^{99}}=A-\frac{99}{5^{99}}\)
\(A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{98}}\)
\(5A=5+1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{97}}\)
\(\Rightarrow4A=5-\frac{1}{5^{98}}< 5\Rightarrow A< \frac{5}{4}\)
\(4P=A-\frac{99}{5^{99}}< A< \frac{5}{4}\Rightarrow P< \frac{5}{16}\)
Chứng minh rằng \(D=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{99}{5^{100}}< \frac{1}{16}\)
Chứng minh \(\frac{5}{3.7}+\frac{5}{7.11}+\frac{5}{11.15}+...+\frac{5}{\left(4n-1\right)\left(4n+3\right)}=\frac{5n}{4n+3}\)
Chứng minh rằng \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\frac{5}{3^5}-.........+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
Chứng minh: \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}<\frac{1}{16}\)
\(\left(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{11}{5^{12}}\right)\)
=\(\left(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{11}{5^{12}}\right)\)<\(\frac{1}{4.5}+\frac{2}{4.5.6}+...+\frac{11}{4.5.6...15}\)
=???
đề 3 :
chứng minh
A = \(\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+.....+\frac{2015}{5^{2015}}< 1\)
Cho\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\).Chứng minh:\(A< \frac{5}{16}\)
\(A=\frac{1}{5}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\Rightarrow5A=1+\frac{2}{5}+\frac{3}{5^2}+...+\frac{11}{5^{10}}\)
\(\Rightarrow4A=5A-A=1+\left(\frac{1}{5}+\frac{1}{5^2}+\frac{...1}{5^{10}}\right)-\frac{11}{5^{11}}\)
\(< 1+\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\right)< 1+\frac{1}{4}=\frac{5}{4}\)
\(\Rightarrow A< \frac{5}{4}:4=\frac{5}{16}\)
Lưu ý : \(M=\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\Rightarrow5M=1+\frac{1}{5}+...+\frac{1}{5^9}\Rightarrow4M=5M-M=1-\frac{1}{5^{10}}\)
\(\Rightarrow M=\frac{1}{4}-\frac{1}{5^{10}}:4< \frac{1}{4}\)
Cho C= \(\frac{5}{4}+\frac{5}{4^2}+\frac{5}{4^3}+..+\frac{5}{4^{99}}\) Chứng minh C<5/3
4C=\(5+\frac{5}{4}+\frac{5}{4^2}+.......+\frac{5}{4^{98}}\)
4C-C=\(5-\frac{5}{4^{99}}\)
3C=\(5-\frac{5}{4^{99}}<5\)
\(\Rightarrow C<\frac{5}{3}\)
Làm ơn, làm phước giúp bạn cấy bài ni cấy -_- <_>
em mà học ruof thì sẽ giúp nhưng chưa họp
Chứng minh:
\(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}<\frac{1}{16}\)