Chứng minh rằng biểu thức sau không thuộc vào x,y:
P=(\(\frac{2.\sqrt[3]{2}xy}{x^2y^2}+\frac{xy-\sqrt[3]{2}}{2xy+2\sqrt[3]{2}}\)).\(\frac{2xy}{xy+\sqrt[3]{2}}-\frac{xy}{xy-\sqrt[3]{2}}\)
Tự nghĩ
Cho xy khác + 2 . Chứng minh biểu thức sau không phụ thuộc và x,y
\(P=\left(\frac{2^3\sqrt{2xy}}{x^2y^2-^3\sqrt{4}}+\frac{xy^3\sqrt{2}}{2xy+2^3\sqrt{2}}\right).\frac{2xy}{xy+^3.\sqrt{2}}\)\(-\frac{xy}{xy-^3\sqrt{2}}\)
??????????
?????????????????
Rút gọn biểu thức \(\left(\frac{2\sqrt[3]{2}-xy}{x^2y^2-\sqrt[3]{4}}+\frac{xy-\sqrt[3]{2}}{2xy+2\sqrt[3]{2}}\right)\frac{2xy}{xy+\sqrt[3]{2}}-\frac{xy}{xy-\sqrt[3]{2}}\)
CÁI NÀY CŨNG KHÓ, GIÚP EM GIẢI HỘ VỚI !
Rút gọn biểu thức:
\(P=\left(\frac{2\sqrt[3]{2}\cdot xy}{x^2y^2-\sqrt[3]{4}}+\frac{xy-\sqrt[3]{2}}{2xy+2\sqrt[3]{2}}\right)\cdot\frac{2xy}{xy+\sqrt[3]{2}}-\frac{xy}{xy-\sqrt[3]{2}}\)
Đặt \(\sqrt[3]{2}=z\)
\(P=\left(\frac{2xyz}{x^2y^2-z^2}+\frac{xy-z}{2\left(xy+z\right)}\right).\frac{2xy}{xy+z}-\frac{xy}{xy-z}\)
\(=\left(\frac{4xyz}{2\left(xy-z\right)\left(xy+z\right)}+\frac{\left(xy-z\right)^2}{2\left(xy-z\right)\left(xy+z\right)}\right).\frac{2xy}{xy+z}-\frac{xy}{xy-z}\)
\(=\frac{\left(xy+z\right)^2}{2\left(xy-z\right)\left(xy+z\right)}.\frac{2xy}{\left(xy+z\right)}-\frac{xy}{xy-z}\)
\(=\frac{xy}{xy-z}-\frac{xy}{xy-z}=0\)
$\left(\frac{2\sqrt[3]{2}xy}{x^2y^2-\sqrt[3]{4}}+\frac{xy-\sqrt[3]{2}}{2xy+\sqrt[3]{2}}\right).\frac{2xy}{xy+\sqrt[3]{2}}-\frac{xy}{xy-\sqrt[3]{2}}$
1.Rút gọn
\(A=\left(\frac{2\sqrt[3]{2xy}}{x^2y^2-\sqrt[3]{4}}+\frac{xy-\sqrt[3]{2}}{2xy+2\sqrt[3]{2}}\right)\cdot\frac{2xy}{xy+\sqrt[3]{2}}-\frac{xy}{xy-\sqrt[3]{2}}\)
2. Chứng minh
\(\frac{1}{4+1^4}+\frac{3}{4+3^4}+...+\frac{2n-1}{4+\left(2n-1\right)^4}=\frac{n^2}{4n^2+1}\)
a/ Bạn coi lại đề, \(2\sqrt[3]{2xy}\) hay \(2\sqrt[3]{2}.xy\)
Như đề bạn ghi thì ko rút gọn được
b/ Xét \(\frac{x}{x^4+4}=\frac{x}{x^4+4x^2+4-\left(2x\right)^2}=\frac{x}{\left(x^2+2\right)^2-\left(2x\right)^2}\)
\(=\frac{x}{\left(x^2+2-2x\right)\left(x^2+2+2x\right)}=\frac{1}{4}\left(\frac{1}{x^2+2-2x}-\frac{1}{x^2+2+2x}\right)\)
Thay \(x=2n-1\) ta được:
\(\frac{2n-1}{4+\left(2n-1\right)^4}=\frac{1}{4}\left(\frac{1}{\left(2n-1\right)^2-2\left(2n-1\right)+2}-\frac{1}{\left(2n-1\right)^2+2\left(2n-1\right)+2}\right)=\frac{1}{4}\left(\frac{1}{4\left(n-1\right)^2+1}-\frac{1}{4n^2+1}\right)\)
\(\Rightarrow VT=\frac{1}{4}\left(\frac{1}{4\left(1-1\right)^2+1}-\frac{1}{4.1^2+1}+\frac{1}{4.1^2+1}-\frac{1}{4.2^2+1}+...+\frac{1}{4\left(n-1\right)^2+1}-\frac{1}{4n^2+1}\right)\)
\(=\frac{1}{4}\left(1-\frac{1}{4n^2+1}\right)=\frac{1}{4}\left(\frac{4n^2}{4n^2+1}\right)=\frac{n^2}{4n^2+1}\)
Cm A không phụ thuộc vào biến:
\(\left(\dfrac{2\sqrt[3]{2}xy}{x^2y^2-\sqrt[3]{4}}+\dfrac{xy-\sqrt[3]{2}}{2xy+2\sqrt[3]{2}}\right).\dfrac{2xy}{xy+\sqrt[3]{2}}-\dfrac{xy}{xy-\sqrt[3]{2}}\)
35Cho biểu thức
P=\(\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right)\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{xy^3}+\sqrt{x^3y}}\)
a) Rút gọn P
b)Cho xy=16 . Tìm Min P
34 Cho biểu thức
P=\(\frac{x}{\sqrt{xy}-2y}-\frac{2\sqrt{x}}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}-\frac{1-x}{1-\sqrt{x}}\)
a) Rút gọn P
b)Tính P biết 2x^2+y^2-4x-2xy+4=0
Các số thực x,y thoả mãn xy≠\(\sqrt[3]{2}\);-\(\sqrt[3]{2}\) CMR biểu thức sau ko phụ thuộc vào x;y:
P= (\(\dfrac{2\sqrt[3]{2}xy}{x^2y^2-\sqrt[3]{4}}+\dfrac{xy-\sqrt[3]{2}}{2xy+\sqrt[3]{2}}\) ).\(\dfrac{2xy}{xy+\sqrt[3]{2}}\) -\(\dfrac{xy}{xy-\sqrt[3]{2}}\)
Rút gọn biểu thức
a,\(\frac{1}{\left(2\sqrt{x}-2\right)}-\frac{1}{\left(2\sqrt{x}+2\right)}+\frac{\sqrt{x}}{\left(1-x\right)}\)
b, \(\left(\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}+\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}\right):\left(\dfrac{x+y+2xy}{1-xy}+1\right)\)
c, \(\dfrac{3\left(x+\sqrt{x}-3\right)}{x+\sqrt{x}-2}+\dfrac{\sqrt{x}+3}{\sqrt{x}+2}-\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)
a: \(=\dfrac{\sqrt{x}+1-\sqrt{x}+1-2\sqrt{x}}{x-1}=\dfrac{-2\left(\sqrt{x}-1\right)}{x-1}=\dfrac{-2}{\sqrt{x}+1}\)
b: \(=\dfrac{\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}+\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}}{1-xy}:\left(\dfrac{x+y+2xy+1-xy}{1-xy}\right)\)
\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{1-xy}\cdot\dfrac{1-xy}{x+y+xy+1}\)
\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)
c: \(=\dfrac{3x+3\sqrt{x}-9+x+2\sqrt{x}-3-x+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{3x+5\sqrt{x}-8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}=\dfrac{3\sqrt{x}+8}{\sqrt{x}+2}\)