Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đừng hỏi tên tôi
Xem chi tiết
Anh Triêt
27 tháng 3 2017 lúc 21:37

Đọc kĩ đề 1 tí là làm dc ngay:

\(A=\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)

\(A< \dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\)

\(A< \dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)

\(A< \dfrac{1}{2}-\dfrac{1}{2012}< 1\)

Vậy \(A< 1\)

Nguyệt Nguyệt
27 tháng 3 2017 lúc 22:27

A = \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)
Ta có :
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2012^2}< \dfrac{1}{2011.2012}\)
=> A = \(\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2012^2}\)< \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\) (1)
Biến đổi vế trái :
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2011.2012}\)
= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}\)
= \(\dfrac{1}{2}-\dfrac{1}{2012}\)
= \(\dfrac{1005}{2012}\)< 1 (2)
Từ (1) (2), suy ra:
A < 1

Nguyễn Văn Tuấn
Xem chi tiết
Nguyễn Văn Tuấn
17 tháng 8 2018 lúc 13:58

Tôi đã biết làm !

hoang bao nhi
Xem chi tiết
Đào An Nguyên
26 tháng 7 2015 lúc 8:45

Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}

Đặng Nhật Nam
Xem chi tiết
Vĩ Nguyễn Phan
19 tháng 4 2018 lúc 21:11

Vì trong tích 1.2.3.....2012 có thừa số 671 và thừa số 3 nên tích sẽ chia hết cho 2013.

=> A chia hết cho 2013

 chắc chắn đúng 100% h cho mình nếu bạn thấy đúng

Đặng Nhật Nam
19 tháng 4 2018 lúc 21:13

cái đó thì quá dễ rồi nhưng nếu ai biến đổi vế bên kia thì tui k cho

Lê Thị Hải Yến
Xem chi tiết
Thắng Nguyễn
19 tháng 4 2016 lúc 18:40

đặt B=1/1*2+1/2*3+...+1/2011*2012

ta có:A= 1/2^2 +  1/3^2 + 1/4^2 + .... + 1/2010^2 + 1/2011^2 + 1/2012^2<B=1/1*2+1/2*3+...+1/2011*2012 (1)

B=1/1*2+1/2*3+...+1/2011*2012

=1-1/2+1/2-1/3+...+1/2011-1/2012

=1-1/2012<1 (2)

từ (1) và (2) =>A<1

Lê Thị Hải Yến
19 tháng 4 2016 lúc 18:30

các bạn ơi giúp mình với mình cần gấp lắm

Nguyệt Nguyệt
Xem chi tiết
Nguyễn Thế Mãnh
8 tháng 1 2017 lúc 18:11

S = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\)

2S = \(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\)

S = 2S - S = \(\left(1+\frac{1}{2^1}+\frac{1}{2^2}+...\frac{1}{2^{2011}}+\frac{1}{2^{2012}}\right)\) - \(\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...\frac{1}{2^{2012}}+\frac{1}{2^{2013}}\right)\)

S = 1 - \(\frac{1}{2013}\)

Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1

=> S < 1 (đpcm)

Nguyen thi quynh anh
5 tháng 3 2019 lúc 20:42

S=\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\)

2S=\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\)

S=2S-S=(\(1+\frac{1}{2^1}+\frac{1}{2^2}+...+\frac{1}{2^{2012}}\))-(\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2013}}\))

S=1-\(\frac{1}{2013}\)

Vì 1 trừ cho số nào lớn hơn 0 thì hiệu đó cũng bé hơn 1

=>S<1

Đỗ Ngọc Huyền
Xem chi tiết
Đoàn Đức Hà
24 tháng 8 2021 lúc 16:34

\(S=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2012^2}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2011.2012}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2011}-\frac{1}{2012}\)

\(=2-\frac{1}{2012}< 2\)

mà \(S>1\)

do đó ta có đpcm. 

Khách vãng lai đã xóa
Nguyễn Ngọc Hiền Phương
Xem chi tiết
Nguyễn Ngọc Hiền Phương
13 tháng 8 2015 lúc 11:16

ai đúng mình sẽ **** cho

Phạm Thị Phương Lam
Xem chi tiết
Trần Thanh Phương
17 tháng 5 2019 lúc 20:43

Xét thấy : \(\frac{1}{2^2}< \frac{1}{1\cdot2};\frac{1}{3^2}< \frac{1}{2\cdot3};...;\frac{1}{2013^2}< \frac{1}{2012\cdot2013}\)

Khi đó : \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2013^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2012\cdot2013}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2012}-\frac{1}{2013}\)

\(=1-\frac{1}{2013}< 1\)

Hay \(A< 1\)