Cho hai số dương x, y thỏa mãn điều kiện: x + y = 2
Chứng minh: x2y2 ( x2 + y2) 2
Cho hai số dương x, y thỏa mãn: x + y = 2
CMR: x2y2(x2 + y2) ≤ 2
Với x, y là hai số dương, dễ dàng chứng minh x + y 2,
do x + y = 2 => 0 < xy ≤ 1 (1)
Ta lại có: 2xy( x2 + y2) ≤
=> 0 < 2xy(x2 + y2) ≤ (x+y)4/4 = 4
=> 0 < xy( x2 + y2) ≤ 2 (2)
Nhân (1) với (2) theo vế ta có: x2y2 ( x2 + y2) ≤ 2 (đpcm)
Dấu “=” xảy ra khi x = y = 1
Cho x, y là các số thực dương thỏa mãn 2 ( x 2 + y 2 ) + x y = ( x + y ) ( x y + 2 ) Giá trị nhỏ nhất của biểu thức P = 4 ( x 3 y 3 + y 3 x 3 ) - 9 ( x 2 y 2 + y 2 x 2 )
A. - 25 4
B. 5
C. -13
D. - 23 4
Đáp án D
Cho x,y > 0 thỏa mãn 2 ( x 2 + y 2 ) + x y = ( x + y ) ( 2 + x y ) ⇔ 2 ( x + y ) 2 - ( 2 + x y ) ( x + y ) - 3 x y = 0 (*)
Đặt x + y = u x y = v ta đc PT bậc II: 2 u 2 - ( v + 2 ) u - 3 = 0 gải ra ta được u = v + 2 + v 2 + 28 v + 4 4
Ta có P = 4 ( x 3 y 3 + y 3 x 3 ) - 9 ( x 2 y 2 + y 2 x 2 ) = 4 ( x y + y x ) 3 - 9 ( x y + y x ) 2 - 12 ( x y + y x ) + 18 , đặt t = ( x y + y x ) , ( t ≥ 2 ) ⇒ P = 4 t 3 - 9 t 2 - 12 t + 18 ; P ' = 6 ( 2 t 2 - 3 t + 2 ) ≥ 0 với ∀ t ≥ 2 ⇒ M i n P = P ( t 0 ) trong đó t 0 = m i n t = m i n ( x y + y x ) với x,y thỏa mãn điều kiện (*).
Ta có :
t = ( x y + y x ) = ( x + y ) 2 x y - 2 = u 2 v - 2 = ( v + 2 + v 2 + 28 v + 4 ) 2 16 v - 2 = 1 16 ( v + 2 v + v + 4 v + 28 ) 2 - 2 ≥ 1 16 ( 2 2 + 32 ) 2 - 2 = 5 2
Vậy m i n P = P ( 5 2 ) = 4 . ( 5 2 ) 2 - 9 ( 5 2 ) 2 - 12 . 5 2 + 18 = - 23 4
Gỉa sử (x;y) là hai số thỏa mãn x 2 y 2 - 1 = 5 , x 2 y 2 + 2 = 125 thì giá trị của x 2 + y 2 bằng
A. 26
B. 30
C. 20
D. 25
Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
Đề lỗi công thức rồi. Bạn xem lại.
Cho x;y là hai số thực dương thỏa mãn x2 + 2y2 +x2y2 -10xy +16 = 0
Giá trị T = x+y là?
Lời giải:
$x^2+2y^2+x^2y^2-10xy+16=0$
$\Leftrightarrow (x^2+y^2-2xy)+(x^2y^2-8xy+16)+y^2=0$
$\Leftrightarrow (x-y)^2+(xy-4)^2+y^2=0$
Vì $(x-y)^2\geq 0; (xy-4)^2\geq 0; y^2\geq 0$ với mọi $x,y$
$\Rightarrow$ để tổng của chúng bằng $0$ thì:
$(x-y)^2=(xy-4)^2=y^2=0$
$\Leftrightarrow x=y=0$ và $xy=4$ (vô lý)
Vậy không tồn tại $x,y$ thỏa mãn đề nên cũng không tồn tại $T$.
Cho x,y,z là 3 số dương thỏa mãn điều kiện x2+y2+z2=2
Tìm GTLN của biểu thức:
\(P=\dfrac{2}{x^2+y^2}+\dfrac{2}{y^2+z^2}+\dfrac{2}{z^2+x^2}-\dfrac{x^3+y^3+z^3}{2xyz}\)
Lời giải:Vì $x^2+y^2+z^2=2$ nên:
$P=\frac{x^2+y^2+z^2}{x^2+y^2}+\frac{x^2+y^2+z^2}{y^2+z^2}+\frac{x^2+y^2+z^2}{z^2+x^2}-\frac{x^3+y^3+z^3}{2xyz}$
$=3+\frac{x^2}{y^2+z^2}+\frac{y^2}{x^2+z^2}+\frac{z^2}{x^2+y^2}-\frac{x^3+y^3+z^3}{2xyz}$
$\leq 3+\frac{x^2}{2yz}+\frac{y^2}{2xz}+\frac{z^2}{2xy}-\frac{x^3+y^3+z^3}{2xyz}$
(theo BĐT AM-GM)
$=3+\frac{x^3+y^3+z^3}{2xyz}-\frac{x^3+y^3+z^3}{2xyz}=3$
Vậy $P_{\max}=3$
Dấu "=" xảy ra khi $x=y=z=\sqrt{\frac{2}{3}}$
Cho x và y là các số dương thỏa mãn x y 2Chứng minh rằng xy<1
Cho hai số thực x≠0, y≠0 thay đổi và thỏa mãn điều kiện (x+y).xy=x2+y2–xy. Giá trị lớn nhất của biểu thức M = 1 x 3 + 1 y 3 là
A. 18
B. 1
C. 9
D. 16
Đáp án D
Phương pháp giải:
Đặt ẩn phụ, đưa về hàm một biến, dựa vào giả thiết để tìm điều kiện của biến
Lời giải:
Từ giả thiết chia cả 2 vế cho x2y2 ta được :
Đặt ta có
Khi đó
Ta có mà
nên
Dấu đẳng thức xảy ra khi . Vậy Mmax = 16