Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ssjs9
Xem chi tiết
Khôi Lê
Xem chi tiết
alibaba nguyễn
24 tháng 9 2018 lúc 9:20

\(x^2-3y^2+2xy-2x+6y-4=0\)

\(\Leftrightarrow\left(x-y+1\right)\left(x+3y-3\right)=1\)

Làm nôt

tth_new
4 tháng 3 2019 lúc 8:56

Viết pt trên thành pt bậc 2 đối với x:\(x^2+2x\left(y-1\right)-\left(3y^2-6y+4\right)=0\) (1)

Pt (1) có nghiệm \(\Leftrightarrow\Delta'=\left(y-1\right)^2+\left(3y^2-6y+4\right)\ge0\)

\(\Leftrightarrow4y^2-8y+5\ge0\),Ta cần có \(\Delta'=k^2\)

Tức là \(4y^2-8y+5=k^2\Leftrightarrow4\left(y-1\right)^2+1=k^2\)

\(\Leftrightarrow\left(2y-2\right)^2-k^2=-1\Leftrightarrow\left(2y-2-k\right)\left(2y-2+k\right)=-1\)

Đến đây bí!

nguyen pokiwar bin
Xem chi tiết
loan leo
Xem chi tiết
Trần Đông
Xem chi tiết
lê thị hương giang
13 tháng 12 2017 lúc 12:31

a, Tìm GTNN

\(A=2x^2+y^2+2xy-8x+2028\)

\(=\left(x^2+2xy+y^2\right)+\left(x^2-8x+16\right)+2012\)

\(=\left(x+y\right)^2+\left(x-4\right)^2+2012\)

Ta có :

\(\left(x+y\right)^2\ge0\) với mọi x

\(\left(x-4\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x+y\right)^2+\left(x-4\right)^2+2012\ge2012\)

Dấu = xảy ra

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-4\right)^2=0\\\left(x+y\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-4=0\\x+y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\)

Vậy \(Min_A=2012\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-4\end{matrix}\right.\)

Ngọc Hiền
13 tháng 12 2017 lúc 12:35

A=2x2+y2+2xy-8x+2028=(x2+2xy+y2)+(x2-8x+16)+2012=(x+y)2+(x-4)2+2012

Vì (x+y)2\(\ge\)0\(\forall\)x,y

(x-4)2\(\ge0\forall x\)

=>(x+y)2+(x-4)2\(\ge0\)

=>(x+y)2+(x-4)2+2012\(\ge2012\forall x,y\)

Đạt được khi và chỉ khi:

\(\left\{{}\begin{matrix}x-4=0\rightarrow x=4\\x+y=0\rightarrow y=-4\end{matrix}\right.\)

Vậy Amin=2012<=>x=4,y=-4

kuroba kaito
13 tháng 12 2017 lúc 12:41

a) A=2x2+y2+2xy-8x+2028

=(x2+2xy+y2)+(x2-8x+16)+2012

=(x+y)2+(x-4)2+2012

do (x+y) 2≥ 0 ∀x;y

(x-4)2≥ 0 ∀x

=> (x+y)2+(x-4)2 ≥ 0

=> (x+y)2+(x-4)2+2012 ≥ 2012

=> A≥2012

vậy GTNN A=2012 khi \(\left[{}\begin{matrix}x+y=0\\x-4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}y=-4\\x=4\end{matrix}\right.\)

Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Hữu Tuyên
Xem chi tiết
Sáng
30 tháng 1 2017 lúc 20:55

Phương trình đã cho có thể được viết:

\(\left(x-y+1\right)\left(x+3y-3\right)=5\)

Do x, y là các số nguyên nên phương trình trên tương đương với:

\(\left\{\begin{matrix}x-y+1=1\\x+3y-3=5\end{matrix}\right.\) hay \(\left\{\begin{matrix}x-y+1=5\\x+3y-3=1\end{matrix}\right.\)

Giải các hệ phương trình nên ta suy ra:

\(x=y=2\) hay \(x=4;y=0\)

thanh xuân
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Hoàng Thanh Tuấn
27 tháng 5 2017 lúc 21:45

<=>\(x^2+2x\left(y-1\right)-3y^2+6y-8=0\)

coi phương trình là phương trình bậc 2 theo ẩn x nên ta có

\(\Delta^'=\left(y-1\right)^2+3y^2-6y+8\)

\(\Delta^'=4y^2-8y+9=\left(2y-4\right)^2-7\)

để phương trình có nghiệm x ,y nguyên thì \(\Delta^'=k^2\)

với k là số tự nhiên

\(\left(2y-4\right)^2-7=k^2\Leftrightarrow\left(2y-4+k\right)\left(2y-4-k\right)=7\)

khi đó (2y-4+k) và (2y-4-k) là ước của 7 là (1,7) do đó ta có hệ

\(\hept{\begin{cases}2y-4+k=7\\2y-4-k=1\end{cases}}\Leftrightarrow4y=16\Leftrightarrow y=4\)

với y=4 thay vào ta có 

\(\Delta^'=\left(2.4-4\right)^2-7=9\)

\(\orbr{\begin{cases}x=\left(1-y\right)-3=1-4-3=-6\\x=\left(1-y\right)+3=1-4+3=0\end{cases}}\)

vậy (x,y)= (0,4) hoặc (-6,4)