3x+2\5x+7=3x-1/5x+1
Tìm x
tìm gtln của -3x^2+5x+6; -4x^2+4x-1
tìm gtnn của x^2+4x+7;x^2-x+1
Bài 2:
a: Ta có: \(x^2+4x+7\)
\(=x^2+4x+4+3\)
\(=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
Tìm x:
a ) (3x -5)^2 - (3x +2) (3x - 2) = 8
b ) (5x + 3) (3 - 5x) + (5x - 7) ( 5x - 7) = 1
Tìm x , biết :
a) ( 3x -1 ) (2x+7) - ( x +1) (6x-5 ) = 16
b) ( 10x +9 )x - ( 5x -1 ) (2x+3 )= 8
c) ( 3x - 5 ) ( 7- 5x ) + ( 5x +2 )( 3x-2 ) -2 = 0
d) x(x + 1) ( x+6 ) - x3 = 5x
a/ pt đãcho tương đương với
6x\(^2\)+ 21x -2x-7-6x+5x-6x+5= 16
<=>18x=18
=> x=1
b/ pt đã cho tương đương với
10x\(^2\)+9x-10x\(^2\)-15x+2x+3= 8
<=> -4x=5
<=.> x=-\(\frac{5}{4}\)
c/ pt đã cho tương đương với
21x-15x\(^2\)-35+25x+15x\(^2\)-10x+6x-4-2=0
<=>42x=41
<=> x= \(\frac{41}{42}\)
d/ pt đã cho tương đương với
( x\(^2\)+x )(x+6)-x\(^3\)=5x
<=> x\(^3\)+6x\(^2\)+x\(^2\)+6x-x\(^3\)=5x
<=> 8x\(^2\)+6x-5x=0
<=>8x\(^2\)+16x-10x-5x=0
<=> (x+2)2x-5(x+2)=0
<=> (x+2)(2x-5)=0
<=>x+2=0 hoặc 2x+5=0
=> x=-2 hoặc x= -\(\frac{5}{2}\)
Thực hiện phép chia
a) (5x^4+3x-1-3x^5):(1+x-x^2)
b) ( 2-4x +3x^4+7x^2-5x^3):(1+x^2-x)
c) ( 17x^2-6x^4+5x^3-23x+7):(7-3x^2-2x)
Bài 2 : Tìm x , biết
a) ( 3x -1 ) (2x+7) - ( x +1) (6x-5 ) = 16
b) ( 10x +9 )x - ( 5x -1 ) (2x+3 )= 8
c) ( 3x - 5 ) ( 7- 5x ) + ( 5x +2 )( 3x-2 ) -2 = 0
d) x(x + 1) ( x+6 ) - x3 = 5x
tìm x
a) ( 3x-1)(2x+7)-(x+1)(6x-5)=16
b) (10x+9)x-(5x-1)(2x+3)=8
c) x.(x+1)(x+6)-x3=5x
d) (3x-5)(7-5x)+(5x+2)(3x-2)-2=0
a) (3x - 1)(2x + 7) - (x + 1)(6x - 5) = 16
6x2 + 21x - 2x - 7 - 6x2 + 5x - 6x + 5 = 16
(6x2 - 6x2) + (21x - 2x + 5x - 6x) + (-7 + 5) = 16
18x - 2 = 16
18x = 18
x = 1
Vậy x = 1
b) (10x + 9)x - (5x - 1)(2x + 3) = 8
10x2 + 9x - 10x2 - 15x + 2x + 3 = 8
(10x2 - 10x2) + (9x - 15x + 2x) + 3 = 8
-4x + 3 = 8
-4x = 5
x = \(\frac{-5}{4}\)
Vậy x = \(\frac{-5}{4}\)
c) x(x + 1)(x + 6) - x3 = 5x
(x2 + x)(x + 6) - x3 = 5x
x3 + 7x2 + 6x - x3 = 5x
7x2 + 6x = 5x
x(7x + 6) = 5x
=> 7x + 6 = 5
7x = -1
x = \(\frac{-1}{7}\)
Vậy x = \(\frac{-1}{7}\)
d) (3x - 5)(7 - 5x) + (5x + 2)(3x - 2) - 2 = 0
21x - 15x2 - 35 + 25x + 15x2 - 10x + 6x - 4 - 2 = 0
(-15x2 + 15x2) + (21x + 25x - 10x + 6x) + (-35 - 4 - 2) = 0
42x - 41 = 0
42x = 41
x = \(\frac{41}{42}\)
Vậy x = \(\frac{41}{42}\)
Tìm x, biết:
a)2x*(6x-5)-4x*(3x+7)=7
b)-5x(2x+1)+3x(3x+2)+x(x-1/2)=0
c)3x*(6x-5)-2x(9x+7)=15
d)1/2x*(2x+4)-(x+3)=5
e)(-3x+2)*5x-5x*(2x+1)-5x=4
Mấy bạn giúp mk ik mk đang cần gấp!
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)
Tìm x biết :
a, 4.(18 - 5x) - 12.(3x - 7) = 15.(2x - 16) - 6(x + 14)
b, 5.(3x + 5) - 4.(2x - 3) = 5x + 3.(2x + 12) + 1
c, 2.(5x - 8) - 3.(4x - 5) = 4.(3x - 4) + 11
d, (3x + 2)(2x + 9) - (x + 2)(6x + 1) = (x + 1) - (x - 6)
e, (8x - 3)(3x + 2) - (4x + 7)(x + 4)= (2x + 1)(5x - 1) - 33
Noob ơi, bạn phải đưa vào máy tính ý solve cái là ra x luôn, chỉ tội là đợi hơi lâu
a, 4.(18 - 5x) - 12(3x - 7) = 15(2x - 16) - 6(x + 14)
=> 72 - 20x - 36x + 84 = 30x - 240 - 6x - 84
=> (72 + 84) + (-20x - 36x) = (30x - 6x) + (-240 - 84)
=> 156 - 56x = 24x - 324
=> 24x + 56x = 324 + 156
=> 80x = 480
=> x = 480 : 80 = 6
Vậy x = 6
b, 5(3x + 5) - 4(2x - 3) = 5x + 3(2x + 12) + 1
=> 15x + 25 - 8x + 12 = 5x + 6x + 36 + 1
=> (15x - 8x) + (25 + 12) = 11x + 37
=> 7x + 37 = 11x + 37
=> 11x - 7x = 0
=> x = 0
Giải phương trình
1) 16-8x=0
2) 7x+14=0
3) 5-2x=0
4) 3x-5=7
5) 8-3x=6
6) 8=11x+6
7)-9+2x=0
8) 7x+2=0
9) 5x-6=6+2x
10) 10+2x=3x-7
11) 5x-3=16-8x
12)-7-5x=8+9x
13) 18-5x=7+3x
14) 9-7x=-4x+3
15) 11-11x=21-5x
16) 2(-7+3x)=5-(x+2)
17) 5(8+3x)+2(3x-8)=0
18) 3(2x-1)-3x+1=0
19)-4(x-3)=6x+(x-3)
20)-5-(x+3)=2-5x
20) -5-(x + 3) = 2 - 5x ⇔ -5 - x - 3 = 2 -5x ⇔ 4x = 10 ⇔ x = \(\frac{5}{2}\)
Vậy...
1) 16 - 8x = 0 ⇔ 8(2 - x) = 0⇔ 2 - x = 0 ⇔ x = 2
Vậy phương trình có nghiệm là x = 2