5+5+5+5=?
6+6+6+6=?
5+5+5+5+6+65+6+6+6+6+6+6+6+6+6+6+9+49+9+9+9+5+5+5+3+5
5 + 5 + 5 + 6 + 65 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 6 + 9 + 49 + 9 + 9 + 5 + 5 + 5 + 3 + 5 = 478.
* Chúc bạn học tốt !
(4+5)*(4+5+6)*(4+5+6+7)*. . . *(4+5+6+...+91)/5*(5+6)*(5+6+7)*...*(5+6+7+...+91)
Tìm x biết \(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^4}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}\)=2\(2^x\)
Sửa đề: 3^5+3^5+3^5; 2^x
=>\(2^x=\dfrac{4^5\cdot4}{3^5\cdot3}\cdot\dfrac{6^5\cdot6}{2^5\cdot2}\)
=>\(2^x=\left(\dfrac{4}{3}\right)^6\cdot\left(\dfrac{6}{2}\right)^6=4^6=2^{12}\)
=>x=12
Tìm số tự nhiên n, biết rằng:
\(\dfrac {4^{5} + {4^{5}} +{4^{5}} + {4^{5}}}{{3^{5}} + {3^{5}} + {3^{5}}}\) . \(\dfrac{6^{5} + {6^{5}} + {6^{5}} + {6^{5}} + {6^{5}} + {6^{5}} }{2^{5} + 2^{5}} = 2^{n}\)
\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n\)
\(\Rightarrow\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\)
\(\Rightarrow\dfrac{4^5.4.6^5.6}{3^5.3.2^5.2}=2^n\)
\(\Rightarrow\dfrac{\left(2.2\right)^5.2.2.\left(3.2\right)^5.3.2}{3^5.3.2^5.2}=2^n\)
\(\Rightarrow\dfrac{2^5.2^5.2.2.3^5.2^5.3.2}{3^5.3.2^5.2}=2^n\)
Rút gọn vế trái ta có :
\(2^5.2.2.^5=2^n\)
\(\Rightarrow2^{12}=2^n\)
\(\Rightarrow n=12\) ( Thỏa mãn điều kiện \(n\in N\) )
Vậy n =12
Số tự nhiên n thỏa mãn:
\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=2^n\)
=>\(\dfrac{4^5\left(1+1+1+1\right)}{3^5\left(1+1+1\right)}.\dfrac{6^5\left(1+1+1+1+1+1\right)}{2^5\left(1+1\right)}=2^n\)
=>\(\dfrac{4^5.4}{3^5.3}.\dfrac{6^5.6}{2^5.2}=2^n\) =>\(\dfrac{4^6}{3^6}.\dfrac{6^6}{2^6}=2^n\)
=>\(\left(\dfrac{4.6}{3.2}\right)^6=2^n\) =>\(4^6=2^n\) =>\(2^{12}=2^n\) =>n=12.
Tìm x biết
\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}\cdot\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^{\left|2x+6\right|}\)
\(\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^{\left|2x+6\right|}\)
\(\Leftrightarrow\frac{4.\left(4^5\right)}{3.\left(3^5\right)}.\frac{6.\left(6^5\right)}{2.\left(2^5\right)}=8^{\left|2x+6\right|}\)
\(\Leftrightarrow\frac{4^6.6^6}{3^6.2^3}=8^{\left|2x+6\right|}\)
\(\Leftrightarrow\frac{\left(2^2\right)^6.\left(2.3\right)^6}{3^6.2^3}=8^{\left|2x+6\right|}\)
\(\frac{2^{12}.2^6.3^6}{3^6.2^3}=\frac{2^{18}.3^6}{3^6.2^3}=\frac{2^{15}.1}{1.1}=2^{15}=8^{\left|2x+6\right|}\)
=> 215=(23)|2x+6|
215=23|2x+6|
<=> 3|2x+6|=15
|2x+6|=15:3
|2x+6|=5
\(\Rightarrow\orbr{\begin{cases}2x+6=5\\2x+6=-5\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=\frac{-11}{2}\end{cases}}\)
Tìm x biết
\(\dfrac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5++3^5}\cdot\dfrac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}=8^{\left|2x+6\right|}\)
Lời giải:
\(\text{VT}=\frac{4^5+4^5+4^5+4^5}{3^5+3^5+3^5}.\frac{6^5+6^5+6^5+6^5+6^5+6^5}{2^5+2^5}\)
\(=\frac{4.4^5}{3.3^5}.\frac{6.6^5}{2.2^5}=\frac{4^6.6^6}{3^6.2^6}=\frac{2^{12}.2^6.3^6}{3^6.2^6}=2^{12}\)
Do đó: \(8^{|2x+6|}=2^{12}\Leftrightarrow 2^{3|2x+6|}=2^{12}\)
\(\Leftrightarrow 3|2x+6|=12\Leftrightarrow |2x+6|=4\)
\(\Rightarrow\left[{}\begin{matrix}2x+6=4\\2x+6=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-5\end{matrix}\right.\)
1+1+1+1+1+1+1+1+1+1+1+5+5+5+5+5+5+5x5x5x5+6+6+6+6+6+6+6+6+6+7+7+7+7+7+77=
4^5+4^5+4^5+4^5/3^5+3^5+3^5.6^5+6^5+6^5+6^5+6^5+6^5/2^5+2^5=8^x Tìm x
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12
4 5. 4. 6.
--- + --- --- + ---
15 6. 5. 7
3. 4. 2. 5
--- + --- --- + ---
5. 20. 5. 12