Tìm GTNN của
B = |x-100| + (x-y)2 + 1000
Tìm GTLN của
B = 10 - (x2 -25 ) 4
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Bài toán 4: Cho x, y là các số nguyên. (Gợi ý: Sử dụng tính chất “Giá trị tuyệt đối của mọi số đều không âm”) a) Tìm GTNN của A = |x + 2| + 50 b) Tìm GTNN của B = |x – 100| + |y + 200| – 1 c) Tìm GTLN của 2015 – |x + 5
a) Ta có /x+2/\(\ge\)0 với \(\forall\)x
nên /x+2/+50\(\ge\)0 với mọi x
Dấu "=" xảy ra \(\Leftrightarrow\)/x+2/=0
\(\Leftrightarrow\)x=\(-2\)
Vậy GTNN của A là 50 khi x=\(-2\)
b)Ta có /x-100/\(\ge\)0 với mọi x
/y+200/\(\ge\)0 với mọi x
nên /x-100/+/y+200/-1\(\ge\)-1 với mọi x
Dấu"=" xảy ra \(\Leftrightarrow\)\(\left\{{}\begin{matrix}x=100\\y=-200\end{matrix}\right.\)
Vậy GTNN của B=-1 khi x=100;y=-200
c)Ta có \(-\)/x+5/\(\le\)0 với mọi x
nên 2015\(-\)/x+5/\(\le\)2015 với mọi x
Dấu"=" xảy ra\(\Leftrightarrow\)x=\(-5\)
Vậy GTLN của bt trên là 2015 khi x=\(-5\)
Giải:
a) A=|x+2|+50
Nhận xét:
|x+2| ≥ 0 ∀ x
⇒|x+2|+50 ≥ 0+50
⇒ A ≥ 50
Vậy để Anhỏ nhất=50 thì khi và chỉ khi |x+2|=0
x+2=0
x=0-2
x=-2
b) B=|x-100|+|y+200|-1
Nhận xét:
|x-100|+|y+200| ≥ 0 ∀ x;y
⇒|x-100|+|y+200|-1 ≥ 0-1
⇒ A ≥ -1
Vậy để Bnhỏ nhất=-1 thì khi và chỉ khi |x-100|+|y+200|=0
⇒x-100=0 và y+200=0
x=0+100 và y=0-200
x=100 và y=-200
c) C=2015-|x+5|
Nhận xét:
|x-5| ≥ 0
⇒2015-|x-5| ≥ 2015-0
⇒ A ≥ 2015
Vậy để Anhỏ nhất=2015 thì |x-5|=0
x-5=0
x=0+5
x=5
Chúc bạn học tốt!
. Tìm GTLN, GTNN của biểu thức:
1) Tìm GTNN của biểu thức:
a) A = x2 - 7x +11. | b) D = x - 2 + x - 3 . |
c) C = 3 - 4x . x2 +1 | d) B = -5 . x2 - 4x + 7 |
e) x2 - x +1 . M = + x +1 x2 | f) P x 1 x 2 x 3 x 6 . |
2) Tìm GTLN của biểu thức
|
| 2x 2 + 4x + 9 |
|
b) | A = x 2 + 2x + 4 . |
|
| ||||||||||||||||||||
c) C = (x2 - 3x +1)(21+ 3x - x2 ) . | d) D = 6x - 8 . x2 +1 |
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
Cho x , y ∈ ℤ
a) Với giá trị nào của x thì biểu thức A = 1000 − x + 5 có GTLN; Tìm GTLN đó.
b) Với giá trị nào của y thì biểu thức B = y − 3 + 50 có GTNN. Tìm GTNN đó.
c) Với giá trị nào của x, y thì biểu thức C = x − 100 + y + 200 − 1
có GTNN. Tìm GTNN đó
a, cho x+y=10. Tìm GTLN của x*y
b, cho x+y=2. Tìm GTNN của x^2+y^2
cho x,y là các số nguyên:
a) tìm GTNN của A=|xx+2| + 50
b) tìm GTNN của B =|x-100|+|y+200|-1
c)Tìm GTLN của 2015--|x+5+(-1)|
a) xx là x^2 hả ??? (tính sau nha)
b)Ta có \(\left|x-100\right|\ge0;\left|y+200\right|\ge0\)
\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)
\(\Rightarrow B\ge-1\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x-100=0\\y+200=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
Vậy \(B_{min}=-1\Leftrightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)
c)pt o có GTLN
Tham khảo(nếu a ko có xx)
https://olm.vn/hoi-dap/detail/97637814260.html
a, Ta có: x + 2 ≥ 0⇒A = x + 2 + 50 ≥ 50
Dấu "=" xảy ra khi x=-2
Vậy GTNN của A=50 khi x=-2
b, Ta có: x − 100 ≥ 0; y + 200 ≥ 0
⇒ x − 100 + y + 200 ≥ 0⇒B= x − 100 + y + 200 − 1 ≥ −1
Dấu "=" xảy ra khi x=100,y=-200
Vậy GTNN của B=-1 khi x=100,y=-200
c, Đặt C = 2015-|x+5|
Ta có: x + 5 ≥ 0⇒ − x + 5 ≤ 0
⇒C = 2015 − x + 5 ≤ 2015
Dấu "=" xảy ra khi x=-5
Vậy GTLN của C = 2015 khi x = -5
Tìm GTLN hoặc GTNN của
A = 3x(3 - x2)
B = 2x(x - 4) - 10
\(B=2x\left(x-4\right)-10=2x^2-8x-10\)
\(=2\left(x^2-4x+4\right)-18=2\left(x-2\right)^2-18\ge-18\)
\(minB=-18\Leftrightarrow x=2\)
a) Tìm GTNN của biểu thức A = x − 2018 + − 100 + x − 2019
b) Tìm GTLN của biểu thức B = 4 − 5 x − 2 − 3 y + 12