chứng minh biểu thức sau không phụ thuộc vào x
2(x^3+y^3)-3(x^2+y^2) với x+y=1
chứng minh biểu thức sau không phụ thuộc vào x: (x^3+y^3)-3(x^2+y^2) biết x+y=1
chứng minh biểu thức sau không phụ thuộc vào x: (x^3+y^3)-3(x^2+y^2) biết x+y=1
chứng minh biểu thức sau không phụ thuộc vào x: (x^3+y^3)-3(x^2+y^2) biết x+y=1
chứng minh giá trị biểu thức sau không phụ thuộc vào giá trị của biến:
a, A = y (x2 - y2) (x2 + y2) - y (x4 - y4)
b, B = (x - 1)3 - (x - 1) (x2 + x + 1) - 3 (1 - x) x
a) \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)=0\)
b) \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x=x^3-3x^2+3x-1-x^3-x^2-x+x^2+x+1-3x+3x^2=0\)
a: Ta có: \(A=y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)
\(=y\left(x^4-y^4\right)-y\left(x^4-y^4\right)\)
=0
b: Ta có: \(B=\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-x^3+1-3x+3x^2\)
=0
- chứng minh biểu thức sau k phụ thuộc vào x: 2.(x^3 + y^3) - 3.(x^2 + y^2) với x + y = 1
Voi x+y=1 ta có:
=2(x+y)(x^2-xy+y^2)-3x^2-3y^2
=2x^2-2xy+2y^2-3x^2-3y^2
= -x^2-2xy-y^2
= -(x+y)2
=-1
Vậy....biểu thức ko phụ thuộc vào x,y ...........
chứng minh biểu thức sau không phụ thuộc vào x
2(x^3+y^3)-3(x^2+y^2) với x+y=1
mọi người giúp mk nha.mk sắp đi học
a/chứng minh rằng biểu thức sau không âm với mọi giá trị của biến
A=(-15.x^3.y^6):(-5xy^2)
b/chứng minh rằng giá trị biểu thức sau ko phụ thuộc vào giá trị của biến y(x,y khác 0)
B=2/3 x^2 y^3:(-1/3xy)+2x(y-1)(y+1)
Câu 3 chứng minh biểu thức sau không phụ thuộc vào biển
A=(2x+y)2 - 4x(x+y)-(y-1)(y+1)
\(A=\left(2x+y\right)^2-4x\left(x+y\right)-\left(y-1\right)\left(y+1\right)\)
\(\Rightarrow A=4x^2+4xy+y^2-4x^2-4xy-y^2+1\)
\(\Rightarrow A=1\)
Vậy A không phụ thuộc vào biến
cho x^2+y^2=1.chứng minh rằng biểu thức sau không phụ thuộc vào biến x,y:2(x^6+y^6)-3(x^4+y^4)
Ta có \(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=1-2x^2y^2\)
Tương tự \(x^6+y^6=\left(x^2\right)^3+\left(y^2\right)^3=\left(x^2+y^2\right)\left(x^2+y^2-x^2y^2\right)=1-x^2y^2\)
Thế vào ta được
\(2\left(1-x^2y^2\right)-3\left(1-2x^2y^2\right)=2-2x^2y^2-3+6x^2y^2=4x^2y^2-1=\left(2xy\right)^2-1\)
Vậy là nó có phụ thuộc vào biến x,y mà bạn ? đề có sai không
Dũng Lê Trí ơi bạn viết sai rồi \(\left(x^2\right)^3+\left(y^2\right)^3\)phải bằng\(\left(x^2+y^2\right)\left(x^4+y^4-x^2y^2\right)\)