Cho tam giác ABC vuông tại A . Biết AB/AC=3/4. BC=20cm. Tính AB AC
bài 3;cho tam giác abc vuông tại a biết ab=2cm tính bc
bài 4;cho tam giác abc vuông tại a biết bc=2cm.tính ab,ac
bài 5.cho tam giác abc vuông tại a
a)tính ab biết bc=10cm,ac=8cm.b)tính ac biết bc=12 cm,ab=10cm
2. Cho tam giác ABC vuông tại A; AB/AC = 3/4; đường cao AH=18cm. Tính chu vi tam giác ABC ?
3. Cho hình thang ABCD ( AB//CD ) có AB= 9cm; CD= 30cm; AD=13cm; BC=20cm. Tính S hình thang ABCD ?
4. Cho tam giác ABC vuông tại A, AB < AC, đường cao AH. Tính độ dài AB, AC biết AH= 6cm; S tám giác ABC = 37,5 cm2
5. Cho tam giác ABC vuông cân tại A, M thuộc BC, AM=m. Tính tổng MB^2 + MC^2 theo m
Làm ơn chỉ giúp mình, cảm ơn rất nhiều !
2/AB/AC=3/4 nên AB=3AC/4(1)
Tam giác ABC vuông tại A, đường cao AH. Ta có: 1/AH2=1/AB2+1/AC2. Thay (1) vào rồi bạn giải phương trình sẽ tìm ra được AB, AC, BC từ đó sẽ ra chu vi tam giác ABC
Cho ∆ABC vuông tại A ( AB>AC ) , BC = 20cm , phân giác AD , BD/BC = 3/4 . Tính AB , AC
Để tính AB và AC, ta sẽ sử dụng định lý Pythagoras trong tam giác vuông.
Với ∆ABC vuông tại A và BD là phân giác của góc B, ta có:
BD/BC = 3/4
Vì BD/BC = 3/4, ta có thể xác định giá trị của BD và CD:
BD = (3/4) * BC = (3/4) * 20cm = 15cm CD = BC - BD = 20cm - 15cm = 5cm
Với AB > AC, ta có thể gọi AB = x và AC = y (với x > y).
Áp dụng định lý Pythagoras trong tam giác vuông ABC, ta có:
AB^2 = AC^2 + BC^2
x^2 = y^2 + 20^2
Ta cũng biết rằng BD là phân giác của góc B, do đó:
AD = DC = 5cm
Áp dụng định lý Pythagoras trong tam giác vuông ABD, ta có:
AB^2 = AD^2 + BD^2
x^2 = 5^2 + 15^2
x^2 = 25 + 225
x^2 = 250
Từ phương trình trên, ta có x = √250 = 5√10
Do đó, AB = 5√10 cm.
Tiếp theo, ta sẽ tính giá trị của y (AC).
Áp dụng định lý Pythagoras trong tam giác vuông ACD, ta có:
AC^2 = AD^2 + CD^2
y^2 = 5^2 + 5^2
y^2 = 25 + 25
y^2 = 50
Từ phương trình trên, ta có y = √50 = 5√2
Do đó, AC = 5√2 cm.
Tóm lại, AB = 5√10 cm và AC = 5√2 cm.
tính cạnh tam giác
a) cho ∆ABC vuông tại A biết AB = 8cm, BC = 10cm, tính AC
b) cho ∆DEF vuông tại E biết EF=7cm, DF = 25cm, tính ED
c) cho ∆ABC vuông tại C biết CA = 21cm, AB = 29cm, tính BC
d) cho ABC vuông tại A có AB = 30cm. Kẻ AH vuông góc BC ở H. Tính AC và AH biết BH = 18cm, CH = 32cm
e) cho ∆ABC vuông tại A biết AB=15cm, AC=20cm, tính BC
mọi ngouiwf trả lời câu này giúp mik vs
bài 1: tam giác ABC vuông tại A đường cao AB/AC =3/4; BC= 10. tính AH, BH
bài 2: cho tam giác ABC vuông tại A đường cao AH=33,6 biết AB/AC =27/4 tính các cạnh của tam giác ABC
bài 3: cho tam giác ABC vuông tại A đường cao AH tính đường cao AH,AB,AC nếu biết BH=36; CH=64
1
\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)
Theo pytago xét tam giác ABC vuông tại A có:
\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)
Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:
\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)
2
\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)
\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)
Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:
\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)
\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)
3
`BC=HB+HC=36+64=100`
Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):
\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)
\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)
Bài 1: ∆ABC vuông tại A, AH BC. Biết BH = 9cm, AH = 12cm, AC = 20cm. Tính AB và HC.Bài 2: ∆ABC có AB = 8cm, AC = 15cm, BC = 17cm.Chứng minh rằng: Tam giác ABC vuông tại A.Bài 3: Tam giác ABC cân tại A. M là trung điểm của BC. E thuộc AM.a. Chứng minh rằng: Tam giác EBC cân tại E.b. Biết AM = 8cm, BC = 12cm. Tính AB.Bài 4: Cho góc xOy = 600 . Ot là phân giác của góc xOy. M thuộc Ot. Kẻ MA Ox, MB Oy. Tia AM cắt Oy tại C, tia BM cắt Ox tại Da. ∆OAB là tam giác gì?b. ∆MAB là tam giác gì?c. ∆MCD là tam giác gì?Bài 5: Tam giác ABC vuông tại A, góc ABC = 600 . BI là phân giác của ABC. Kẻ IE BC.a. ∆ABE là tam giác gì?b. ∆IAE là tam giác gì?c. Biết AB = 3cm, BC = 5cm. Tính ACGiúp tớ với tớ cần gấp ạ
Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)
=> AM là trung tuyến
Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)
=> AM là đường cao (TC các đường trong tam giác cân)
Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)
EM là đường cao (AM là đường cao, E thuộc AM)
=> Tam giác EBC cân tại E
M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét tam giác AMB vuông tại M (AM \(\perp BM\))
AB2 = AM2 + BM2 (định lý Py ta go)
Thay số: AB2 = 82 + 62
<=> AB2 = 100
<=> AB = 10 (cm)
Vậy AB = 10 (cm)
Bài 1:
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AH2 = BH . HC (hệ thức lượng)
<=> 122 = 9 . HC
<=> HC = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)
Vậy HC = 16 (cm)
Ta có: BC = BH + HC = 9 + 16 = 25 (cm)
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AB2 = BH . BC (hệ thức lượng)
<=> AB2 = 9 . 25
<=> AB2 = 225
<=> AB = 15 (cm)
Vậy AB = 15 (cm)
Cho tam giác ABC vuông tại A, đường cao AH. Biết AC=15cm, AB=20cm. Tính BC, AH và chu vi tam giác ABC
Xét tam giác ABC vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right)\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{20^2+15^2}=25\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác ABC vuông tại A:
\(AH.BC=AB.AC\)
\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{20.15}{25}=12\left(cm\right)\)
Ta có: \(P_{ABC}=AB+AC+BC=20+15+25=60\left(cm\right)\)
Cho tam giác ABC vuông tại A biết BC=20cm và 4AB=3AC. Tính AB,AC
\(\Delta ABC\)vuông tại \(A\Leftrightarrow AB^2+AC^2=BC^2=400\)
\(4AB=3AC\Leftrightarrow\frac{AB}{3}=\frac{AC}{4}\Leftrightarrow\frac{AB^2}{9}=\frac{AC^2}{16}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{AB^2}{9}=\frac{AC^2}{16}=\frac{AB^2+AC^2}{9+16}=\frac{400}{25}=16\)
\(\Rightarrow\hept{\begin{cases}AB^2=9.16=144\Leftrightarrow AB=12\\AC^2=16.16\Leftrightarrow AC=16\end{cases}}\)
Cho tam giác ABC vuông tại A, cạnh BC=20cm, hiệu 2 cạnh AB và AC bằng 4, tính diện tích tam giác ABC
Vẽ thành hình vuông cạnh 20cm
Ở giữa là 1 hình vuông nhỏ cạnh 4cm
Suy ra 4 lần: SABC =20x20-4x4=384 ---->SABC=384:4=96cm