Bài 1: ∆ABC vuông tại A, AH BC. Biết BH = 9cm, AH = 12cm, AC = 20cm. Tính AB và HC.Bài 2: ∆ABC có AB = 8cm, AC = 15cm, BC = 17cm.Chứng minh rằng: Tam giác ABC vuông tại A.Bài 3: Tam giác ABC cân tại A. M là trung điểm của BC. E thuộc AM.a. Chứng minh rằng: Tam giác EBC cân tại E.b. Biết AM = 8cm, BC = 12cm. Tính AB.Bài 4: Cho góc xOy = 600 . Ot là phân giác của góc xOy. M thuộc Ot. Kẻ MA Ox, MB Oy. Tia AM cắt Oy tại C, tia BM cắt Ox tại Da. ∆OAB là tam giác gì?b. ∆MAB là tam giác gì?c. ∆MCD là tam giác gì?Bài 5: Tam giác ABC vuông tại A, góc ABC = 600 . BI là phân giác của ABC. Kẻ IE BC.a. ∆ABE là tam giác gì?b. ∆IAE là tam giác gì?c. Biết AB = 3cm, BC = 5cm. Tính ACGiúp tớ với tớ cần gấp ạ
Xét tam giác ABC cân tại A: M là trung điểm của BC(gt)
=> AM là trung tuyến
Xét tam giác ABC cân tại A: AM là trung tuyến (cmt)
=> AM là đường cao (TC các đường trong tam giác cân)
Xét tam giác EBC: EM là trung tuyến (AM là trung tuyến, E thuộc AM)
EM là đường cao (AM là đường cao, E thuộc AM)
=> Tam giác EBC cân tại E
M là trung điểm của BC (gt) => BM = \(\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Xét tam giác AMB vuông tại M (AM \(\perp BM\))
AB2 = AM2 + BM2 (định lý Py ta go)
Thay số: AB2 = 82 + 62
<=> AB2 = 100
<=> AB = 10 (cm)
Vậy AB = 10 (cm)
Bài 1:
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AH2 = BH . HC (hệ thức lượng)
<=> 122 = 9 . HC
<=> HC = \(\dfrac{12^2}{9^{ }}=\dfrac{144}{9}=16\left(cm\right)\)
Vậy HC = 16 (cm)
Ta có: BC = BH + HC = 9 + 16 = 25 (cm)
Xét ∆ABC vuông tại A, AH \(\perp\) BC:
Ta có: AB2 = BH . BC (hệ thức lượng)
<=> AB2 = 9 . 25
<=> AB2 = 225
<=> AB = 15 (cm)
Vậy AB = 15 (cm)