1. Phân tích thành nhân tử:
xy(x + y) + yz(y + z) + xz(x+z) + 2xyz
Phân tích thành nhân tử:xy(x-y)-xz(x+y)+yz(2x-y+z)
Phân tích thành nhân tử: xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
xy(x + y) + yz(y + z) + xz(x + z) + 2xyz
= x 2 y + x y 2 + yz(y + z) + x 2 z + x z 2 + xyz + xyz
= ( x 2 y + x 2 z) + yz(y + z) + (x y 2 + xyz) + (x z 2 + xyz)
= x 2 (y + z) + yz(y + z) + xy(y+ z) + xz(y + z)
= (y + z)( x 2 + yz + xy + xz) = (y + z)[( x 2 + xy) + (xz + yz)]
= (y + z)[x(x + y) + z(x + y)] = (y + z)(x+ y)(x + z)
phân tích đa thức thành nhân tử : xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích thành nhân tử
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Ta co :
Đặt tổng trên là A
A= xy(x+y)+yz(y+z)+xz(x+z)+2xyz
A= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
A= xy(x + y) + yz(y + z + x) + xz(x + z + y)
A= xy(x + y) + z(x + y + z)(y + x)
A= (x + y)(xy + zx + zy + z2 )
A= (x + y)[x(y + z) + z(y + z)]
A= (x + y)(y + z)(z + x)
Phân tích thành nhân tử xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
**** đi nak , làm rui đó
Phân tích đa thức thành nhân tử:
xy(x+y) + yz(y+z) + xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z2)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
Phân tích đa thức thành nhân tử:
xy(x+y)+yz(y+z)+zx(z+x)+3xyz.
Đề sai r bạn phải là xy(x+y)+yz(y+z)+zx(z+x)+2xyz chứ
\(xy\left(x+y\right)+yz\left(y+z\right)+zx\left(z+x\right)+3xyz\)
\(=xy\left(x+y\right)+xyz+yz\left(y+z\right)+xyz+zx\left(z+x\right)+xyz\)
\(=xy\left(x+y+z\right)+yz\left(x+y+z\right)+zx\left(x+y+z\right)\)
\(=\left(xy+yz+zx\right)\left(x+y+z\right)\)
Phân tích đa thức thành nhân tử xy(x+y) + yz(y+z) + xz(x+z) + 2xyz
nhu the nay:
( xy( x + y )+ xyz )+( yz( y + z )+ xyz )+( xz( a +c )+ xyz)
= xy( x+y+z )+ yz( x + y + z )+ xz( x + y + z )
= ( x + y + z)( xy + yz +zx )
xong rui do dung thi ****.
phân tích đa thức sau thành nhân tử :
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)
xy(x+y)+yz(y+z)+xz(x+z)+2xyz
= xy(x + y) + yz(y + z) + xyz + xz(x + z) + xyz
= xy(x + y) + yz(y + z + x) + xz(x + z + y)
= xy(x + y) + z(x + y + z)(y + x)
= (x + y)(xy + zx + zy + z²)
= (x + y)[x(y + z) + z(y + z)]
= (x + y)(y + z)(z + x)