Tìm các số nguyên dương x,y thỏa mãn điều kiện: 2^x+2^y=64
Tìm các số nguyên dương x,y thỏa mãn điều kiện: 2^x+2^y=72
Tìm các số nguyên dương x, y, z thỏa mãn điều kiện ( x + 1) ( y + z) = xyz + 2.
Tìm các số nguyên dương x,y,z thỏa mãn điều kiện (x+1)(y+z)=xyz+2
Tìm tất cả các cặp số nguyên dương (x; y) thỏa mãn điều kiện 2x2 - 2xy + x + y + 2 = 0
\(\Leftrightarrow2x^2+x+2=y\left(2x-1\right)\)
\(\Leftrightarrow y=\dfrac{2x^2+x+2}{2x-1}=x+1+\dfrac{3}{2x-1}\)
\(y\in Z\Rightarrow\dfrac{3}{2x-1}\in Z\)
Mà x nguyên dương \(\Rightarrow2x-1>0\)
\(\Rightarrow2x-1=Ư\left(3\right)\Rightarrow x=\left\{1;2\right\}\)
\(\Rightarrow\left(x;y\right)=\left(1;5\right);\left(2;4\right)\)
Tìm các số nguyên dương x, y thỏa mãn điều kiện: 2x+2y=72
\(2^x+2^y=72\)
\(2^x+2^y=64+8\)
\(2^x+2^y=2^6+2^3\)
\(\Rightarrow x=6;y=3\)
Giả sử x>y, ta có:
2x + 2y = 72
=> 2y (1 + 2x-y) = 23. 32
Vì 1 + 2x-y là số lẻ nên 1 + 2x-y = 1;3;9
Với 1 + 2x-y =1 thì 2y = 9 (loại)Với 1 + 2x-y = 3 thì 2y = 24 (loại)Với 1 + 2x-y = 9 thì 2y =1 => y = 0, 1 + 2x-y = 9 => 2x = 8 => x = 3Vậy x = 3 và y = 0
tìm các số nguyên dương x,y thỏa mãn điều kiện: 2x + 2y = 72
a)tìm các cặp số nguyên dương x,y thỏa mãn: 2x^2+3y^2-5xy-x+3y-4=0
b) các số x,y,z thỏa mãn điều kiện x^2+y^2+z^2=2014. tìm giá trị nhỏ nhất của M=2xy-yz-xz
Tìm tất cả các cặp số nguyên dương (x; y) thỏa mãn điều kiện 2x2 - 2xy + x + y + 2 = 0
Tìm các số x, y nguyên dương thỏa mãn điều kiện:
2x2 + 2y2 - x - y - 2xy + 1/2 = 0
Ta có: \(2x^2+2y^2-x-y-2xy+\frac{1}{2}=0\)
\(\Leftrightarrow\left(x^2+y^2-2xy\right)+\left(x^2-x+\frac{1}{4}\right)+\left(y^2-y+\frac{1}{4}\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-\frac{1}{2}\right)^2+\left(y-\frac{1}{2}^2\right)=0\)
Nhận xét \(\left(x-y\right)^2\ge0;\left(x-\frac{1}{2}\right)^2\ge0;\left(y-\frac{1}{2}\right)^2\ge0\)
\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x-\frac{1}{2}\right)^2=0\\\left(y-\frac{1}{2}\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x-y=0\\x-\frac{1}{2}=0\\y-\frac{1}{2}=0\end{cases}\Leftrightarrow}x=y=\frac{1}{2}}\)