Tìm các giá trị của x để các biểu thức sau có nghĩa:
\(\sqrt{x^2+x+2}\)
\(2-\sqrt{1-9^2}\)
1. Tính x để căn thức sau có nghĩa:
\(\sqrt{\frac{-2x}{x^2-\text{3}x+9}}\)
2. Tìm các giá trị nguyên của x để các biểu thức sau có nghĩa:
a/A=\(\frac{\sqrt{x}+\text{3}}{\sqrt{x}-2}\)
b/B=\(\frac{2\sqrt{x}-1}{\sqrt{x}+\text{3}}\)
3. Cho biểu thức P= (\(\frac{\sqrt{x}}{\sqrt{x}-1}\)-\(\frac{1}{x-x\sqrt{x}}\): (\(\frac{1}{\sqrt{x}+1}\)+\(\frac{2}{x-1}\))
a/ Tìm điều kiện x để P xđ: Rút gọn
b/ Tìm các giá trị của P để P <0
c/ Tính giá trị của P khi x=4-2\(\sqrt{\text{3}}\)
Tìm các giá trị nguyên của x để các biểu thức sau có nghĩa
\(c=\frac{\sqrt{x+3}}{\sqrt{x-2}}\)
\(D=\frac{2\sqrt{x}-1}{\sqrt{x}+3}\)
\(C=\frac{\sqrt{x+3}}{\sqrt{x-2}}\)\(đkxđ\Leftrightarrow\hept{\begin{cases}x-2\ge0\\x-2\ne0\end{cases}}\)
\(\Rightarrow x-2>0\Rightarrow x>2\)
\(D=\frac{2\sqrt{x}-1}{\sqrt{x}+3}\)\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\\sqrt{x}+3\ne0\left(tm\right)\end{cases}}\)
\(\Rightarrow x\ge0\)
Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nguyên
A=\(\dfrac{x+2}{x-5}\) B=\(\dfrac{3x+1}{2-x}\) C=\(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\) D=\(\dfrac{2\sqrt{x}-1}{\sqrt{x}+3}\)
\(A=\) \(\dfrac{x+2}{x-5}\)
\(=\dfrac{\left(x-5\right)+7}{x-5}\)
\(=1+\dfrac{7}{x-5}\)
để \(\dfrac{7}{x-5}\) ∈Z thì 7⋮x-5
⇒x-5∈\(\left(^+_-1,^+_-7\right)\)
Còn lại thì bạn tự tính nha
cho biểu thức: P=\(\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
a) tìm điều kiện của x để P có nghĩa
b) rút gọn P
c) tìm các giá trị nguyên của x để P có giá trị nguyên
a) ĐKXĐ : \(\hept{\begin{cases}x\ge0\\x\ne1\\x\ne9\end{cases}}\)
b) \(P=\left(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x-3}{x-9}\right):\left(\frac{2\sqrt{x}-2}{\sqrt{x}+3}\right)\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}+3}{2\left(\sqrt{x}-1\right)}=\frac{-3\left(\sqrt{x}-1\right)}{2\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}=-\frac{3}{2\left(\sqrt{x}-3\right)}\)c) Để P nguyên thì \(2\left(\sqrt{x}-3\right)\in\left\{-3;-1;1;3\right\}\)=> x thuộc rỗng.
(3,0 điểm) Với x > 0 x ne4 , cho hai biểu thức. A = (sqrt(x) + 10)/(sqrt(x)) * vaB = 1/(sqrt(x) + 2) - (sqrt(x))/(sqrt(x) - 2) + (2x - sqrt(x) + 2)/(x - 4) 1 ) Tính giá trị của A khi x = 9 2) Rút gọn biểu thức B 3) Tìm tất cả các giá trị của x để biểu thức P =A.B có giá trị nguyên
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.
Tìm giá trị của x để các biểu thức sau có nghĩa:
a)\(\sqrt{\dfrac{3x-1}{5}}\)
b)\(\sqrt{\dfrac{3}{15-2x}}\)
c) \(\sqrt{\dfrac{-2x}{x^2-3x+9}}\)
a: ĐKXĐ: \(x\ge\dfrac{1}{3}\)
b: ĐKXĐ: \(x< \dfrac{15}{2}\)
c: ĐKXĐ: \(x\le0\)
Cho biểu thức
\(P=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}.\)
a) Tìm điều kiện để P có nghĩa, rút gọn biểu thức P;
b) Tìm các giá trị của x để P<-1/3
; c) Tính giá trị nhỏ nhất của P
Cho biểu thức
\(P=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}.\)
a) Tìm điều kiện để P có nghĩa, rút gọn biểu thức P;
b) Tìm các giá trị của x để P<-1/3
; c) Tính giá trị nhỏ nhất của P
Mọi người giúp mình với, 3 tiếng nữa phải đi học rồi
Cho biểu thức
\(P=\frac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}+2}{1-\sqrt{x}}.\)
a) Tìm điều kiện để P có nghĩa, rút gọn biểu thức P;
b) Tìm các giá trị của x để P<-1/3
; c) Tính giá trị nhỏ nhất của P