Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thaiduong phuongkhanh
Xem chi tiết
Jeong Soo In
25 tháng 2 2020 lúc 17:23

a)Kết quả hình ảnh cho Cho tam giác ABC nhọn, các đường cao AD,BE, CF cắt nhau tại H (D thuộc BC, E thuộc AC, F thuộc AB).a) chứng minhHD/ADNguồn: Lazi.

Khách vãng lai đã xóa
nguyễn đức quang
Xem chi tiết
Linh Lê
25 tháng 4 2021 lúc 11:20

Xét ΔHDB VÀ ΔHEA, có:

\(\widehat{BHD}\) = \(\widehat{EHA}\)( đối đỉnh)

\(\widehat{BDH}\) = \(\widehat{HEA}\) = 90°( giả thiết )

Do đó ΔHDB ∞ ΔHEA

➜ \(\dfrac {HD}{HE}\) = \(\dfrac{HB}{HA}\) ➜ HA . HD = HB . HE

Lê Hương Giang
Xem chi tiết
Tố Quyên
Xem chi tiết

a: Xét ΔHFA vuông tại F và ΔHDC vuông tại D có

\(\widehat{FHA}=\widehat{DHC}\)(hai góc đối đỉnh)

Do đó: ΔHFA~ΔHDC

=>\(\dfrac{HF}{HD}=\dfrac{HA}{HC}\)

=>\(HF\cdot HC=HD\cdot HA\left(1\right)\)

Xét ΔHFB vuông tại F và ΔHEC vuông tại E có

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB~ΔHEC
=>\(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)

=>\(HF\cdot HC=HB\cdot HE\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HD=HF\cdot HC=HB\cdot HE\)

c: Xét tứ giác AFHE có \(\widehat{AFH}+\widehat{AEH}=90^0+90^0=180^0\)

nên AFHE là tứ giác nội tiếp

Xét tứ giác BFHD có \(\widehat{BFH}+\widehat{BDH}=90^0+90^0=180^0\)

nên BFHD là tứ giác nội tiếp

Xét tứ giác CEHD có \(\widehat{CEH}+\widehat{CDH}=90^0+90^0=180^0\)

nên CEHD là tứ giác nội tiếp

Ta có: \(\widehat{EFH}=\widehat{EAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DFH}=\widehat{DBH}\)(BFHD là tứ giác nội tiếp)

mà \(\widehat{EAH}=\widehat{DBH}\left(=90^0-\widehat{ECB}\right)\)

nên \(\widehat{EFH}=\widehat{DFH}\)

=>FH là phân giác của góc EFD

Ta có: \(\widehat{FEH}=\widehat{FAH}\)(AEHF là tứ giác nội tiếp)

\(\widehat{DEH}=\widehat{DCH}\)(ECDH là tứ giác nội tiếp)

mà \(\widehat{FAH}=\widehat{DCH}\left(=90^0-\widehat{ABD}\right)\)

nên \(\widehat{FEH}=\widehat{DEH}\)

=>EH là phân giác của góc FED

Xét ΔFED có

EH,FH là các đường phân giác

Do đó: H là giao điểm của ba đường phân giác trong ΔFED

Edogawa Conan
Xem chi tiết
Thánh cao su
6 tháng 12 2017 lúc 21:20

A B C D E F H

Ta có: \(\dfrac{AD.BC}{2}=S_{ABC}\Rightarrow AD=\dfrac{2S_{ABC}}{BC}\)

\(\Rightarrow\dfrac{HD}{AD}=\dfrac{HD.BC}{2S_{ABC}}\)

Tương tự: \(\dfrac{HE}{BE}=\dfrac{HE.AC}{2S_{ABC}};\dfrac{HF}{CF}=\dfrac{HF.AB}{2S_{ABC}}\)

\(\Rightarrow\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{BHC}+S_{AHC}+S_{AHC}}{S_{ABC}}=1\)

Quỳnh Anh
Xem chi tiết
le ngoc diep
3 tháng 5 2021 lúc 10:30

đó nha bn

Khách vãng lai đã xóa
Vũ Khôi Nguyên
3 tháng 5 2021 lúc 10:33

a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)

Do đó: tg HDB đồng dạng tg DCA (g.g)

Suy ra: HD/DC=BD/DA-> bd*dc=dh*da

b, HD/HA=SBHC/SABC

HE/BE=SAHC/SABC

HF/CF=SHAB/SABC

HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1

Khách vãng lai đã xóa
zin zin
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 4 2021 lúc 21:37

a) Xét ΔHFB vuông tại F và ΔHEC vuông tại E có 

\(\widehat{FHB}=\widehat{EHC}\)(hai góc đối đỉnh)

Do đó: ΔHFB∼ΔHEC(g-g)

Suy ra: \(\dfrac{HF}{HE}=\dfrac{HB}{HC}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(HB\cdot HE=HC\cdot HF\)(đpcm)

Nguyễn Trung Hiếu
Xem chi tiết
Tran Kim
Xem chi tiết