cho tam giác ABC vuông tại A, AB=8cm,AC=6cm. AD là tia phân giác của góc A(D thuộc BC), đường cao AH(H thuộc BC). Chứng minh rằng:
a, tính DB/DC
b, Tính BC từ đó tính DB,DC rồi làm tròn kết quả đến chữ số thập phân thứ 2
c, tam giác AHB đồng dạng với tam giác CHA. Tính S AHB/ S CHA
Cho tam giác ABC vuông tại A,Ab=8cm,AC=6cm,AD là tia phân giác góc A,D thuộc BC
a,Tính DB/Dc
b,Tính BC,từ đó tính DB,DC làm tròn kết quar 2 chữ số thập phân
c,Kẻ đường cao AH(H thuộc BC).Chứng minh rằng tam giác AHB đồng dạng với tam giác CHA.Tính Diện tích tam giác AHB/Diện tích tam giác CHA
d,Tính AH
Theo định lí Pytago tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=10cm\)
Vì AD là pg \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\Leftrightarrow\dfrac{DC}{AC}=\dfrac{BD}{AB}\)
Theo tc dãy tỉ số bằng nhau ta có
\(\dfrac{DC}{AC}=\dfrac{BD}{AB}=\dfrac{BC}{AC+AB}=\dfrac{10}{14}=\dfrac{5}{7}\Rightarrow DC=\dfrac{30}{7}cm;BD=\dfrac{40}{7}cm\)
Xét tam giác ABC có tia AD là đường phân giác của góc A =>DB/DC = AB/AC
(tính chất của đường phân giác )
<=> DB/DC = 8/6=4/3
Cho tam giác ABC vuông tại A có AB = 12 cm, AC = 16 cm. Vẽ đường cao AH. a) Chứng minh HBA ABC b) Tính BC, AH, BH. c) Vẽ đường phân giác AD của tam giác ABC (D BC). Tính BD, CD. (Làm tròn kết quả đến chữ số thập phân thứ nhất ) d) Trên AH lấy điểm K sao cho AK = 3,6cm. Từ K kẽ đường thẳng song song BC cắt AB và AC lần lượt tại M và N. Tính diện tích tứ giác BMNC
a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
góc B chung
=>ΔHBA đồng dạng với ΔABC
b: BC=căn 12^2+16^2=20cm
AH=12*16/20=9,6cm
BH=AB^2/BC=7,2cm
c: AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/4=(BD+CD)/(3+4)=20/7
=>BD=60/7\(\simeq8,6\left(cm\right)\) và CD=80/7\(\simeq11,4\left(cm\right)\)
Cho tam giác ABC vuông tại A có AB = 6cm, AC =8cm. Đường cao AH( H thuộc BC), tia phân giác góc A cắt BC tại D
a) Chứng minh tam giác ABC đồng dạng với tam giác AHC
b) Chứng minh AC^2=BC.HC
c) Tính độ dài các đoạn thẳng BC, DB, DC( kết quả làm tròn đến chữ số thập phân số 2)
cho tam giác ABC vuông tại A , AB=8cm ; AC=6cm ; AD là tia phân giác của góc A ; D thuộc BC
a, tính\(\frac{DB}{BC}\)
b, tính BC ; DB ; DC (làm tròn kết quả đến chữ số thập phân thứ 2 )
c, kẻ đường cao AH ; H thuộc BC. chứng minh tam giác AHB đồng dạng với tam giác CHA
d, tính tỉ số s\(\frac{AHB}{CHA}\)
cho tam giác abc vuông tại a đường cao ah phân giác ad cho bd=15 cm, dc=20cm. tính ab,ac,ah,ad (làm tròn đến số thập phân thứ 2)
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH.
a) Chứng minh tam giác.CHA đồng dạng tam giác CAB
b) Kẻ AD là phân giác của góc HAC (D thuộc HC ) . Biết AC = 16 cm , CB =20 cm. Tính CH , AH và DC .
a) Xét ΔCHA và ΔCAB ta có:
\(\widehat{C}\) chung
\(\widehat{BAC}=\widehat{AHC}=90^0\)
\(\Rightarrow\Delta CHA\)∼\(\Delta CAB\left(g.g\right)\)
b)Xét ΔABC vuông tại A, áp dụng địn lí py-ta-go ta có:
\(BC^2=AB^2+AC^2\\ \Rightarrow AB^2=BC^2-AC^2\)
\(=20^2-16^2\)
\(=144\)
\(\Rightarrow AB=\sqrt{144}=12cm\)
vì ΔCHA∼ΔCAB(cmt)
\(\Rightarrow\dfrac{AB}{AH}=\dfrac{AC}{CH}=\dfrac{BC}{AC}hay\dfrac{12}{AH}=\dfrac{16}{CH}=\dfrac{20}{16}=\dfrac{5}{4}\)
Suy ra:
\(AH=\dfrac{12.4}{5}=9,6cm\)
\(CH=\dfrac{16.4}{5}=12,8cm\)
Xét ΔAHC có AD là phân giác ta có:
\(\dfrac{AH}{HD}=\dfrac{AC}{DC}=\dfrac{AH+AC}{CH}hay\dfrac{9,6}{HD}=\dfrac{16}{DC}=\dfrac{16+9,6}{12,8}=2\)
\(\Rightarrow DC=\dfrac{16}{2}=8cm\)
Cho tam giác DOC vuông tại D có DI là đường cao . a) Chứng minh : tam giác DOC đồng dạng với tam giác IOD . b) biết DO= 5cm , DC = 12cm . Tính OC, OI ( kết quả làm tròn đến số thập phân thứ nhất ) . Chứng minh: DI^2 = IC.IO
a: Xét ΔDOC vuông tại D và ΔIOD vuông tại I có
góc O chung
Do đó: ΔDOC\(\sim\)ΔIOD
b: \(CO=\sqrt{5^2+12^2}=13\left(cm\right)\)
\(OI=\dfrac{OD^2}{OC}=\dfrac{5^2}{13}=\dfrac{25}{13}\left(cm\right)\)
c: Xét ΔODC vuông tại D có DI là đường cao
nên \(DI^2=IC\cdot ID\)
Cho tam giác ABC vuông tại A, biết AB = 6cm, AC = 9 cm. Đường cao AH ( H thuộc BC). a) Chứng minh: HAC đồng dạng ABC b) Chứng minh: AC2 = BC.HC c) Kẻ đường phân giác AD, tính độ dài BD và CD . ( lm r nma sợ sai ;-; )
Áp dụng pytago vào \(\Delta ABC\) vuông ta đc
\(BC^2=AB^2+AC^2=\sqrt{117}\left(3\sqrt{13}\right)\)
Mà AD là phân giác \(\widehat{BAC}\)
\(\Rightarrow BD=CD=\dfrac{BC}{2}=\dfrac{3\sqrt{13}}{2}\)