A=1/51+1/52+...+1/100 cmr A<31/40
Bài 4 :
a,Cho A= 1/2!+1/3!+.....+1/100!
CMR A<1
b, CMR :1-1/2+1/3-1/4+...+1/99-1/100=1/51+1/52+....+1/100
CMR: 1/51 + 1/52 + 1/52 +...+1/100 = 1-1/2 + 1/3 - 1/4 +...+1/99-1/100
Ta có \(1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)=\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{100}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{50}\right)=\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}\)
\(\Rightarrow\text{Đ}PCM\)
Cho A=\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100},CMR:\frac{3}{5}< A< \frac{31}{40}\)
cmr
a, 1/2<1/51+1/52+....+1/100<1
b 7/12<1/21+1/22+....+1/40<1/10
b, đặt cái 1/21 + 1/22 +1/23+....+1/40 là A nhé và A có 20 hạng tử
Ta có 1/21 + 1/22 +1/ 23+......+1/30>1/30 +1/30 +....+1/30 =10/30 =1/3(*)
lại có 1/31 + 1/32+.....+1/40>1/40 + 1/40 + 1/40.....=10/40=1/4(**)
từ (*) và (**) => A> 1/3 +1/4
A>7/12
từng đó thì phải. Còn < 1/10 thì sai đề vì 7/12 > 1/10 mà. Mình chỉ cm đc < 5/6 thôi
a, ta có 1/51 + 1/52 + 1/53 + 1/54.....+1/100 > 1/100 + 1/100 + 1/100+......+1/100
=> 1/51 +1/52 +......+1/100 > 50/100 =1/2 ( vì có 50 hạng tử)
tương tự 1/51 + 1/52 +1/53 ..........+1/100 < 1/51 + 1/51 + 1/51 +1/51......
=> 1/51 + 1/52 + 1/53....+1/100 < 50/51 <1
nên ta suy ra điều phải cm
cho S = 1/51+1/52+...+1/100. CMR 7/12<S<5/6
Ta có: 151+152+...+175>175+175+...+175=2575=13
176+177+...+1100>1100+1100+...+1100=25100=14
=> S>13+14=712 (1)
Ta có: 151+152+...+175<150+150+...+150=2550=12
176+177+...+1100<175+175+...+175=2575=13
=> S<12+13=56(2)
Từ (1) và (2) => 712 < S<56
Ta có:
- 1/51 > 1/75, 1/52 > 1/75 ...
=> 1/51 + 1/52 + ... + 1/75 > 1/75 + ... 1/75 = 25/75 = 1/3
- 1/76 > 1/100, 1/77 > 1/100 ...
=> 1/76 + 1/77 + ... + 1/100 > 1/100 + ... + 1/100 = 25/100 = 1/4
Từ đó : S = ( 1/51 + ... + 1/75 ) + ( 1/76 + ... + 1/100 ) > 1/3 + 1/3 = 7/12 (1)
- 1/51 < 1/50, 1/52 < 1/50 ...
=> 1/51 + 1/52 + ... + 1/75 < 1/50 + ... 1/50 = 25/50 = 1/2
- 1/76 < 1/75, 1/77 < 1/75...
=> 1/76 + 1/77 + ... + 1/100 < 1/75 + ... + 1/75 = 25/75 = 1/3
Từ đó : S = ( 1/51 + ... + 1/75 ) + ( 1/76 + ... + 1/100 ) < 1/2 + 1/3 = 5/6 (2)
từ (1) và (2) => 5/6 > S > 7/12
* Chúc bn học tốt !!!
Cho S = 1/51 + 1/52 + 1/53 + ... + 1/100 . CMR 7/12 < S < 5/6
A = 1/51 +1/52 + 1/53 + ... + 1/100
B = 1/1.2 + 1/3.4 + 1/4.5 + ... + 1/99.100
CMR A : B = 1
Làm mà t thấy hợp lí cho tick
Bài làm:
Dạ thưa đề B bạn viết sai rồi ạ!
Ta có: \(B=\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(B=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{1}{2}+\frac{1}{2}+\frac{1}{4}+\frac{1}{4}+...+\frac{1}{100}+\frac{1}{100}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(\frac{2}{2}+\frac{2}{4}+\frac{2}{6}+...+\frac{2}{100}\right)\)
\(B=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(B=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}=A\)
\(A\div B=1\)
=> đpcm
Học tốt!!!!
ok tks bạn Đăng nhé <33
Cảm ơn bạn Tạ Duy Khoa nhìu ạ!
CMR(1/1*2+1/2*3+1/3*4+1/4*5+...+1/99*100):(1/51+1/52+1/53+...+1/100) = 1
Sửa đề: \(\dfrac{\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
\(=\dfrac{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)
=1
Cho a/b=1/51+1/52+1/53+...+1/100
CMR a chia hết cho 151
Các bạn nhanh nhé mik cần gấp
Ai đúng mik tick cho
\(\frac{a}{b}=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+...+\frac{1}{100}\)
\(\frac{a}{b}=\left(\frac{1}{51}+\frac{1}{100}\right)+\left(\frac{1}{52}+\frac{1}{99}\right)+...+\left(\frac{1}{75}+\frac{1}{76}\right)\)
\(\frac{a}{b}=\frac{151}{51.100}+\frac{151}{50.99}+...+\frac{151}{75.76}\)
Chọn mẫu chung = 51.52.53...100
Gọi các thừa số phụ lần lượt là: k1; k2; ...; k25
=> \(\frac{a}{b}=\frac{151.\left(k_1+k_2+...+k_{25}\right)}{51.52...100}\)
Do 151 là số nguyên tố mà tích 51.52...100 không chứa thừa số 151 => 51.52....100 không chia hết cho 151
=> đến khi phân số a/b tối giản thì a vẫn chia hết cho 151 (đpcm)
Mik rút gọn cho bn nha
\(\frac{a}{b}=\frac{1}{51.100}+\frac{1}{52.99}+..........+\frac{1}{100.51}\)
\(151.\frac{a}{b}=\frac{1}{51}+\frac{1}{100}+\frac{1}{52}+\frac{1}{99}+......+\frac{1}{100}+\frac{1}{51}\)
\(\Rightarrow\left(151.\frac{a}{b}\right):2=\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.........+\frac{1}{100}\)
\(\Rightarrow\frac{a}{b}=\frac{2}{151}.\left(\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+.........+\frac{1}{100}\right)\)
Chúc bn hok tốt