Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
lazycatYT

CMR(1/1*2+1/2*3+1/3*4+1/4*5+...+1/99*100):(1/51+1/52+1/53+...+1/100) = 1

Nguyễn Lê Phước Thịnh
11 tháng 4 2023 lúc 13:18

Sửa đề: \(\dfrac{\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

\(=\dfrac{1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

\(=\dfrac{\left(1+\dfrac{1}{3}+...+\dfrac{1}{99}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{100}\right)}{\dfrac{1}{51}+\dfrac{1}{52}+...+\dfrac{1}{100}}\)

=1


Các câu hỏi tương tự
nguyen van an
Xem chi tiết
Hảo
Xem chi tiết
Đỗ Trung Hiếu
Xem chi tiết
Do Trung Hieu
Xem chi tiết
Nguyên Minh Hiếu
Xem chi tiết
Tran Duc Dung
Xem chi tiết
Thảo Fami
Xem chi tiết
Nguyễn Văn Minh Hoàng
Xem chi tiết
Thảo Fami
Xem chi tiết