CMR: \(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\)
chia hết cho 100
A= 75.(4^2004+4^2003+...+4^2+4+1)+25
CMR: A chia hết cho 100
Chứng tỏ rằng:
\(A=75.\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\)là số chia hết cho 100
Chắc đặt nhầm lớp rồi
Ta có :\(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(4B=\left(4^{2004}+4^{2003}+...+4^2+4+1\right).4\)
\(4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(4B-B=\left(4^{2005}+4^{2004}+...+4^3+4^2+4\right)\)\(-\left(4^{2004}+4^{2003}+...+4+1\right)\)
\(3B=\left(4^{2005}-1\right)\)\(\Rightarrow\frac{4^{2005}-1}{3}\)
\(\Rightarrow A=75.\frac{4^{2005}-1}{3}+25\)
\(\Rightarrow A=25.\left(4^{2005}-1\right)+25\)
\(\Rightarrow A=25.\left(4^{2005}-1+1\right)\)
\(\Rightarrow A=25.4.4^{2004}\)
\(\Rightarrow A=100.4^{2004}\)
Mà 100 chia hết 100 nên \(100.4^{2004}\) chia hết cho 100
B=4^0 + 4^1 +...+ 4^2004
4B=4^1+4^2+...+4^2005
3B=4^2004-4^0
B=(4^2004-4^0):3
Thay B vào ta có :
A=75.(4^2004-4^0):3+25
A=25.(4^2004-4^0)+25
A=25.4^2004
A=100.4^2003
Vậy A chia hết cho 100
Chứng tỏ A = \(75\times\left(4^{2004}+4^{2003}+.....+4^2+4+1\right)+25\) là số chia hết cho 100
\(A=75.\left(4^{2004}+4^{2003}+......+4^2+1\right)+25\)
Đặt :
\(B=4^{2004}+4^{2003}+.......+4^2+4+1\)
\(\Leftrightarrow4B=4^{2005}+4^{2004}+........+4^2+4\)
\(\Leftrightarrow4B-B=\left(4^{2005}+4^{2004}+......+4^2+4\right)-\left(4^{2004}+4^{2003}+.....+4+1\right)\)
\(\Leftrightarrow3B=4^{2005}-1\)
\(\Leftrightarrow B=\dfrac{4^{2005}-1}{3}\)
\(\Leftrightarrow A=75.\dfrac{4^{2005}-1}{3}+25\)
\(\Leftrightarrow A=25.\left(4^{2004}-1+1\right)\)
\(\Leftrightarrow A=25.4.4^{2003}\)
\(\Leftrightarrow A=100.4^{2003}⋮100\left(đpcm\right)\)
CM: \(A=75.\left(4^{2004}+4^{2003}+4^{2002}+....+4^2+4^1+1\right)+25\)là số chia hết cho 100
A=4+4^1+4^2+..........+4^2004
A.3=4^2007-4
\(A=\frac{\left(4^{2007}-4\right)}{3}\)
Chứng minh: \(75.\left(4^{2004}+4^{2003}+4^{2002}+...+4^2+4+1\right)+25\) chia hết cho 100
dat A=75*(4^2004+4^2003+...+4^2+4+1)+25
B=4^2004+4^2003+...+4^2+4+1
4B=4+4^2+4^3+...+4^2005
3B=4^2005-1
B=(4^2005-1)/3
A=75*(4^2005-1)/3+25
A=25*(4^2005-1)+25
A=25*4*4^2004-25+25
A=100*4^2004
Vay A chia het cho 100
k cho minh nhieu nha
Có : Gọi B=4^2004+4^2003+...+4^2+4+1
4B = 4^2005+4^2004+...+4^2+4
=> 4B-B = (4^2005+4^2004+...4^3+4^2+4) - (4^2004+4^2003+...+4^2+4+1)
=> 3B = 4^2005 - 1
=> B = (4^2005 - 1)/3
=> A = 75.(4^2004+4^2003+...+4^2+4^1+1)+25
=> A= 75.(4^2005-1)/3+25
=75/3.(4^2005)-1+25
= 25 (4^2005 -1) +25
= 25 x 4 ^ 2005
= 25 x 4 x 4 ^ 2004 = 100 x4 ^ 2004
=>100 x4 ^ 2004 chia hết cho 100=>a chia hết cho 100
Chứng tỏ rằng:
A = \(75\times\left(4^{2004}+4^{2003}+...+4^2+4+1\right)+25\)chia hết cho 100.
CMR: A = 75.( 42004 + 42003 + 42002 + ...+42 + 4 +1) + 25 chia hết cho 100.
A= 75. (42004+.......+4+1) + 25
= 25 . (4-1) . (42004+.....+4+1) + 25
= 25.[4.(42004+......+4+1) - (42004+......+4+1)] + 25
= 25.[ (4+ 42+........+ 42005 ) - ( 1+ 4 +........+42004)] + 25
= 25.(42005 - 1) + 25
= 25. 42005- 25 +25
= 25. 42005
= (25. 4). 42004
= 100. 22004
Mà 100 chia hết cho 100 => 100. 22004 chia hết cho 100
=> A chia hết cho 100 ( đccm)
Mk ghi nhầm đó ^^
Chứng tỏ rằng
\(A=75\left(4^{2004}+4^{2003}+...+4^2+4+1\right)\)Là số chia hết hết cho 100
A=75(42004+42003+..+4+1)+25
=75(42004+42003+..+4)+75+25
=3.25.(42004+42003+...+4)+100
=3.25.4(42003+42002+...+1)+100
=3.100(42003+42002+..+1)+100\(⋮\)100
=> A\(⋮\)100
Đúng thì k nha
CMR : A = 75.(42004 + 22003 + ..... + 42 + 4 +1) +25 cha hết cho 100
Đặt \(B=4^{2004}+4^{2003}+...+4^2+4+1\)
\(\Leftrightarrow4B=4^{2005}+4^{2004}+...+4^3+4^2+4\)
\(\Leftrightarrow B=\dfrac{4^{2005}-1}{3}\)
\(A=75\cdot\dfrac{4^{2005}-1}{3}+25\)
\(=25\left(4^{2005}-1+1\right)=100\cdot4^{2004}⋮100\)