Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Duy Dai
Xem chi tiết
Tran Le Khanh Linh
21 tháng 8 2020 lúc 20:17

Bài này phải tìm GTLN chứ nhỉ?!

Khách vãng lai đã xóa
Trần Bình
Xem chi tiết
Bùi Hữu Vinh
Xem chi tiết
Yen Nhi
5 tháng 1 2021 lúc 23:17
Bạn tham khảo lời giải của tớ nha!

Bài tập Tất cả

Khách vãng lai đã xóa
Dương Thanh Ngân
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 7:40

\(A\ge\dfrac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)

\(A_{min}=\dfrac{1}{2}\) khi \(x=y=z=\dfrac{1}{3}\)

Họ Và Tên
Xem chi tiết
Etermintrude💫
21 tháng 5 2021 lúc 14:53

undefined

Nguyễn Mai
Xem chi tiết
Phùng Minh Quân
5 tháng 12 2019 lúc 20:40

\(Q=\Sigma\frac{x^4}{x^2+\sqrt{xy.zx}}\ge\frac{\left(x^2+y^2+z^2\right)^2}{x^2+y^2+z^2+xy+yz+zx}\ge\frac{x^2+y^2+z^2}{2}\ge\frac{\left(x+y+z\right)^2}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi x=y=z=1 

Khách vãng lai đã xóa
dinh huong
Xem chi tiết
Fire Sky
Xem chi tiết
Love Phương Forever
1 tháng 5 2019 lúc 15:52

Quẩy lên các em êii

Phùng Minh Quân
1 tháng 5 2019 lúc 16:04

\(A=\frac{\sqrt{xy}}{z+2\sqrt{xy}}+\frac{\sqrt{yz}}{x+2\sqrt{yz}}+\frac{\sqrt{zx}}{y+2\sqrt{zx}}\)

\(2A=\frac{z+2\sqrt{xy}}{z+2\sqrt{xy}}-\frac{z}{z+2\sqrt{xy}}+\frac{x+2\sqrt{yz}}{x+2\sqrt{yz}}-\frac{x}{x+2\sqrt{yz}}+\frac{y+2\sqrt{zx}}{y+2\sqrt{zx}}-\frac{y}{y+2\sqrt{zx}}\)

\(=3-\left(\frac{x}{x+2\sqrt{yz}}+\frac{y}{y+2\sqrt{zx}}+\frac{z}{z+2\sqrt{xy}}\right)\le3-\left(\frac{x}{x+y+z}+\frac{y}{x+y+z}+\frac{z}{x+y+z}\right)\)

\(=3-\frac{x+y+z}{x+y+z}=3-1=2\)\(\Leftrightarrow\)\(A\le\frac{2}{2}=1\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=z\)

...

bá đạo
Xem chi tiết
Tạ Duy Phương
25 tháng 12 2015 lúc 21:10

Ta cm được: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

\(A=x^4+y^4+z^4\ge x^2y^2+y^2z^2+z^2x^2\ge\frac{\left(xy+yz+zx\right)^2}{3}=\frac{1}{3}\)

Min A = 1/3 khi và chỉ khi \(x=y=z=\frac{1}{\sqrt{3}}\)