Giai PT.
a.\(x^2+4x+5=2\sqrt[]{2x+3}\)
1. Giai phương trình: \(2x+3+\sqrt{4x^2+9x+2}=2\sqrt{x+2}+\sqrt{4x+1}\)
2. Giai hệ phương trình: \(\left\{{}\begin{matrix}2x^2-y^2+xy-5x+y+2=\sqrt{y-2x+1}-\sqrt{3-3x}\\x^2-y-1=\sqrt{4x+y+5}-\sqrt{x+2y-2}\end{matrix}\right.\)
giai phuong trinh: \(\sqrt[3]{x^2+4x+3}+\sqrt[3]{4x^2-9x-3}=\sqrt[3]{3x^2-2x+2}+\sqrt[3]{2x^2-3x-2}\)
Giai cac pt:
a, \(2x^2-8x+\sqrt{x^2-4x-5}=13\)
b, \(\sqrt{1-x}+\sqrt{4+x}=3\)
c, \(x^3+4x+5=2\sqrt{2x+3}\)
d, \(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2-16}\)
e, \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
Giai phương trình: \(\sqrt[3]{x^2+4x+3}-\sqrt[3]{2x^2-3x-2}=\sqrt[3]{3x^2-2x+2}-\sqrt[3]{4x^2-9x-3}\)
\(\Leftrightarrow\sqrt[3]{4x^2-9x-3}-\sqrt[3]{2x^2-3x-2}=\sqrt[3]{3x^2-2x+2}-\sqrt[3]{x^2+4x+3}\)
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{4x^2-9x-3}=a\\\sqrt[3]{2x^2-3x-2}=b\\\sqrt[3]{3x^2-2x+2}=c\\\sqrt[3]{x^2+4x+3}=d\end{matrix}\right.\) ta được:
\(\left\{{}\begin{matrix}a-b=c-d\\a^3-b^3=c^3-d^3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a-b=c-d\\\left(a-b\right)\left(a^2+ab+b^2\right)=\left(c-d\right)\left(c^2+cd+d^2\right)\end{matrix}\right.\)
TH1: \(a-b=c-d=0\) \(\Leftrightarrow2x^2-6x-1=0\Leftrightarrow...\)
TH2: \(a-b=c-d\ne0\) \(\Rightarrow a^2+ab+b^2=c^2+cd+d^2\)
\(\Leftrightarrow\left(a-b\right)^2+4ab=\left(c-d\right)^2+4cd\)
\(\Leftrightarrow ab=cd\)
\(\Leftrightarrow\left(4x^2-9x-3\right)\left(2x^2-3x-2\right)=\left(3x^2-2x+2\right)\left(x^2+4x+3\right)\)
\(\Leftrightarrow x\left(5x^3-40x^2+10x+25\right)=0\)
\(\Leftrightarrow5x\left(x-1\right)\left(x^2-7x-5\right)=0\)
\(\Leftrightarrow...\)
Nhận thấy x=0 là nghiệm của PT
Xét x khác 0
\(PT\Leftrightarrow\sqrt[3]{x^2+4x+3}-\sqrt[3]{3x^2-2x+2}=\sqrt[3]{2x^2-3x-2}-\sqrt[3]{4x^2-9x-3}\)\(\Leftrightarrow\frac{-2x^2+6x+1}{\left(\sqrt[3]{x^2+4x+3}\right)^2+\sqrt[3]{\left(x^2+4x+3\right)\left(3x^2-2x+2\right)}+\left(\sqrt[3]{3x^2-2x+2}\right)^2}\)\(=\frac{-2x^2+6x+1}{\left(\sqrt[3]{2x^2-3x-2}\right)^2+\sqrt[3]{\left(2x^2-3x-2\right)\left(4x^2-9x-3\right)}+\left(\sqrt[3]{4x^2-9x-3}\right)}\)
\(\Leftrightarrow\left(-2x^2+6x+1\right)\left(....\right)=0\)(tự viết cái trong ngoặc nhaa :33 dài quá)
\(\Leftrightarrow x=\frac{3\pm\sqrt{11}}{2}\)
Vậy ......
Giai pt
1) \(\left(x+5\right)\left(2-x\right)=3\sqrt{x^2+3x}\)
2) \(\frac{x}{x+1}-2\sqrt{\frac{x+1}{x}}-3=0\)
3) \(x^2+\sqrt{2x^2+4x+3}=6-2x\)
4) \(x^2+\sqrt{x+5}=5\)
5) \(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
5) \(ĐK:x\ge-\frac{3}{2}\)
\(x^3+4x-\left(2x+7\right)\sqrt{2x+3}=0\)
\(\Leftrightarrow\frac{x^3+4x}{2x+7}=\sqrt{2x+3}\Leftrightarrow\frac{x^3+4x}{2x+7}-3=\sqrt{2x+3}-3\)
\(\Leftrightarrow\frac{\left(x-3\right)\left(x^2+3x+7\right)}{2x+7}=\frac{2\left(x-3\right)}{\sqrt{2x+3}+3}\)
\(\Leftrightarrow\left(x-3\right)\left(\frac{x^2+3x+7}{2x+7}-\frac{2}{\sqrt{2x+3}+3}\right)=0\)
(không có nghiệm thực)
Vậy phương trình có 1 nghiệm duy nhất là 3
1) \(Pt\Leftrightarrow-x^2-3x+10=3\sqrt{x^2+3x}\)( đk: \(x\le-3,x\ge0\)
Đặt \(t=\sqrt{x^2+3x},t\ge0\)
Pt trở thành: \(-t^2-3t+10=0\Leftrightarrow t=2\left(dot\ge0\right)\)
giải \(\sqrt{x^2+3x}=2\Leftrightarrow\orbr{\begin{cases}x=1\\x=-4\end{cases}}\)
3) \(x^2+\sqrt{2x^2+4x+3}=6-2x\Leftrightarrow-\sqrt{2x^2+4x+3}=x^2+2x-6\)\(\Leftrightarrow\left(2x^2+4x+3\right)-15=-2\sqrt{2x^2+4x+3}\)
Đặt \(\sqrt{2x^2+4x+3}=t\)(t > 0) thì phương trình trở thành \(t^2-15=-2t\Leftrightarrow t^2+2t-15=0\Leftrightarrow\left(t+5\right)\left(t-3\right)=0\Leftrightarrow\orbr{\begin{cases}t=-5\left(L\right)\\t=3\left(tm\right)\end{cases}}\)
Với t = 3 thì \(\sqrt{2x^2+4x+3}=3\Leftrightarrow2x^2+4x+3=9\Leftrightarrow2x^2+4x-6=0\Leftrightarrow\left(x-1\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}\)Vậy phương trình có tập nghiệm S = {1; -3}
Giai phuong trinh
1/ \(\sqrt{x^2+4x+5}+\sqrt{x^2-6x+13}=3\)
2/ \(\sqrt{3x^2-18x+28}+\sqrt{4x^2-24x+45}=6x-x^2-5\)
3/ \(\sqrt{2x^2-4x+27}+\sqrt{3x^2-6x+12}=4x^2+8x+4\)
4/ \(\sqrt{x^2+x+7}+\sqrt{x^2+x+2}=\sqrt{3x^2+3x+19}\)
5/ \(\left(x+2\right)\left(x+3\right)-\sqrt{x^2+5x+1}=9\)
6/ \(\left(x+4\right)\left(x+1\right)-3\sqrt{x^2+5x+2}=6\)
7/ \(\sqrt{2x^2+3x+5}+\sqrt{2x^2-3x+5}=3\sqrt{x}\)
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
1 Giai phương trình:
\(\sqrt{5x^2-2x\sqrt{5}+1}=\sqrt{6-2\sqrt{5}}\)
\(x-\sqrt{4x-3}=2\)
Đk : \(x\ge\frac{3}{4}\)
\(x-\sqrt{4x-3}=2\)
\(x-2=\sqrt{4x-3}\)
\(\Rightarrow\left(x-2\right)^2=\left(\sqrt{4x-3}\right)^2\)
\(x^2-4x+4=4x-3\)
\(x^2-8x+7=0\)
\(\Delta=36\Rightarrow\sqrt{\Delta}=6\)
\(\Rightarrow\)Phương trình có hai nghiệm phân biệt :
\(x_1=1\left(tm\right)\)
\(x_2=7\left(tm\right)\)
\(\sqrt{5x^2-2x\sqrt{5}+1}=\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow\)\(5x^2-2x\sqrt{5}+1=6-2\sqrt{5}\)
\(\Leftrightarrow\)\(\left(x\sqrt{5}-1\right)^2=\left(\sqrt{5}-1\right)^2\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x\sqrt{5}-1=\sqrt{5}-1\\x\sqrt{5}-1=1-\sqrt{5}\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=\frac{2-\sqrt{5}}{\sqrt{5}}\end{cases}}\)
Vậy...
ĐK: \(x\ge\frac{3}{4}\)
\(x-\sqrt{4x-3}=2\)
\(\Leftrightarrow\)\(\sqrt{4x-3}=x-2\)
\(\Leftrightarrow\)\(4x-3=x^2-4x+4\)
\(\Leftrightarrow\)\(x^2-8x+7=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-7\right)=0\)
đến đây tự làm
Mình làm câu còn lại nha :
ĐK : \(x\ge\frac{\sqrt{5}}{5}\)
\(\sqrt{\left(x\sqrt{5}-1\right)^2}=\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(x\sqrt{5}-1=\sqrt{5}-1\)
\(x\sqrt{5}=\sqrt{5}\)
\(x=1\left(tm\right)\)
giai pt:
a) \(\sqrt{x^2-4x-12}=9-2x\)
b) \(\left(x+1\right)\sqrt[3]{15x^2-x-1}=x^2-1\)
c) \(\left(2x-2\right)\sqrt{2x-1}=6\left(x-1\right)\)
d) \(\frac{\sqrt{-x^2+4x-3}-1}{x-3}=2\)
e) \(\frac{5+\sqrt{x+1}}{x-2}=7\)
Đệ biết là có người làm câu c,d nên xin xí câu e :3
ĐK: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)
\(PT\Leftrightarrow5+\sqrt{x+1}=7\left(x-2\right)\)
\(\Leftrightarrow\sqrt{x+1}=7x-19\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=49x^2-266x+361\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\)
\(\Rightarrow x=3\left(tm\right)\)
a/ \(\Leftrightarrow\left\{{}\begin{matrix}9-2x\ge0\\x^2-4x-12=\left(9-2x\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le\frac{9}{2}\\3x^2-32x+93=0\end{matrix}\right.\)
Phương trình vô nghiệm
b/ \(\Leftrightarrow\left(x+1\right)\sqrt[3]{15x^2-x-1}-\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(\sqrt[3]{15x^2-x-1}-x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\Rightarrow x=-1\\\sqrt[3]{15x^2-x-1}-x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\sqrt[3]{15x^2-x-1}=x-1\)
\(\Leftrightarrow15x^2-x-1=x^3-3x^2+3x-1\)
\(\Leftrightarrow x^3-18x^2+4x=0\)
\(\Leftrightarrow x\left(x^2-18x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=9\pm\sqrt{77}\\\end{matrix}\right.\)
c/ ĐKXĐ: \(x\ge\frac{1}{2}\)
\(\Leftrightarrow2\left(x-1\right)\sqrt{2x-1}-6\left(x-1\right)=0\)
\(\Leftrightarrow2\left(x-1\right)\left(\sqrt{2x-1}-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\\sqrt{2x-1}-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\2x-1=9\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
d/ ĐKXĐ: \(1\le x< 3\)
\(\Leftrightarrow\sqrt{-x^2+4x-3}-1=2x-6\)
\(\Leftrightarrow\sqrt{-x^2+4x-3}=2x-5\) (\(x\ge\frac{5}{2}\))
\(\Leftrightarrow-x^2+4x-3=\left(2x-5\right)^2\)
\(\Leftrightarrow5x^2-24x+28=0\)
\(\Rightarrow\left[{}\begin{matrix}x=2< \frac{5}{2}\left(l\right)\\x=\frac{14}{5}\end{matrix}\right.\)
e/ ĐKXĐ: \(\left\{{}\begin{matrix}x\ge-1\\x\ne2\end{matrix}\right.\)
\(\Leftrightarrow5+\sqrt{x+1}=7x-14\)
\(\Leftrightarrow\sqrt{x+1}=7x-19\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\x+1=\left(7x-19\right)^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\frac{19}{7}\\49x^2-267x+360=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=3\\x=\frac{120}{49}< \frac{19}{7}\left(l\right)\end{matrix}\right.\)
giai pt sau
\(\sqrt{3x-1}-\sqrt{x+2}.\sqrt{3x^2+7x+2}+4=4x-2\)
\(x^2-5x+3.\sqrt{2x-1}=2.\sqrt{14-2x}+5\)
\(\left(x+1\right)\left(x+4\right)-3\sqrt{x^2+5x+2}=6\)
nhiều thế giải ko đổi đâu bạn
đkxđ : \(\frac{1}{2}\le x\le7\)
\(x^2-5x+3\sqrt{2x-1}=2\sqrt{14-2x}+5\)
\(\Leftrightarrow\left(x^2-5x\right)+3\left(\sqrt{2x-1}-3\right)=2\left(\sqrt{14-2x}-2\right)\)
\(\Leftrightarrow x\left(x-5\right)+\frac{3.\left(2x-10\right)}{\sqrt{2x-1}+3}+\frac{2.\left(2x-10\right)}{\sqrt{14-2x}+2}=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+\frac{6}{\sqrt{2x-1}+3}+\frac{4}{\sqrt{14-2x}+2}\right)=0\)
\(\Leftrightarrow x=5\)
còn bài a,c lười đánh lắm