dat \(\sqrt{2x+3}=a\left(a\ge0\right)\)
=> \(a^2=2x+3\)
=> \(x=\frac{a^2-3}{2}\)
pt <=> \(\frac{\left(a^2-3\right)^2}{4}+4\times\frac{a^2-3}{2}+5=2a\)
<=> \(\left(a^4-6a^2+9\right)+8a^2-4=8a\)
<=> \(a^4+2a^2-8a+5=0\)
<=> \(a^4-a^3+a^3-a^2+3a^2-3a-5a+5=0\)
<=.> \(a^3.\left(a-1\right)+a^2.\left(a-1\right)+3a\left(a-1\right)+5\left(a-1\right)=0\)
<=> \(\left(a-1\right)\left(a^3+a^2+3a-5\right)=0\)
<=> \(\orbr{\begin{cases}a=1\\a^3+a^2+3a+5=0\left(1\right)\end{cases}}\)
bạn bấm máy tính cái pt 1 thì a=1 (tm)
thay a=1 vao \(\sqrt{2x+3}=a\)
tìm ra x