Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
sasfet
Xem chi tiết
Hoàng Lê Bảo Ngọc
24 tháng 7 2016 lúc 22:35

C3 : Ta có ; \(B=\sqrt{x-4}+\sqrt{y-3}\) . Nhận xét : \(B\ge0\)

Áp dụng bất đẳng thức Bunhiacopxki : \(B^2=\left(1.\sqrt{x-4}+1.\sqrt{y-3}\right)^2\le\left(1^2+1^2\right)\left(x-4+y-3\right)\)

\(\Rightarrow B^2\le16\Rightarrow B\le4\). Dấu "=" xảy ra khi và chỉ khi \(\hept{\begin{cases}x\ge4,y\ge3\\\sqrt{x-4}=\sqrt{y-3}\\x+y=15\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=8\\y=7\end{cases}}\)

Vậy B đạt giá trị lớn nhất bằng 4 tại (x;y) = (8;7)

Tìm GTNN và mấy bài tới để từ từ mình làm cho nhé , tại mạng đang chậm...

Hoàng Lê Bảo Ngọc
25 tháng 7 2016 lúc 9:00

C4 : Bạn cần thêm điều kiện x là số dương nhé : )

Ta có ; \(A=\frac{2x^2-6x+5}{2x}=x+\frac{5}{2x}-3\). Áp dụng bất đẳng thức Cauchy : 

\(x+\frac{5}{2x}\ge2\sqrt{x.\frac{5}{2x}}=\sqrt{10}\). Dấu "=" xảy ra \(\Leftrightarrow x=\frac{5}{2x}\Leftrightarrow\sqrt{\frac{5}{2}}\)

Vậy Min A = \(\sqrt{10}-3\Leftrightarrow x=\sqrt{\frac{5}{2}}\)

C5 : Bạn cần thêm điều kiện a,b là hằng số nhé :) 

\(P=\frac{\left(x+a\right)\left(x+b\right)}{x}=\frac{x^2+ax+bx+ab}{x}=x+\frac{ab}{x}+a+b\)

Áp dụng bất đẳng thức Cauchy : \(x+\frac{ab}{x}\ge2\sqrt{x.\frac{ab}{x}}=2\sqrt{ab}\Rightarrow P\ge a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)

Dấu "=" xảy ra khi và chỉ khi \(x^2=ab\Leftrightarrow x=ab\) (vì a,b,x > 0)

Vậy .......

Princess Star
Xem chi tiết
Phan Hoàng Quốc Khánh
Xem chi tiết
nguyễn quốc hoàn
Xem chi tiết
kudo shinichi
2 tháng 3 2019 lúc 16:48

B tự c/m BĐT \(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)nhé.

Dấu " = " xảy ra \(\Leftrightarrow x=y=z\)

Áp dụng :

\(x^4+y^4+z^4\ge\frac{1}{3}.\left(x^2+y^2+z^2\right)^2\ge\frac{1}{3}.\left[\frac{1}{3}.\left(x+y+z\right)^2\right]^2=\frac{1}{27}.\left(x+y+z\right)^4=\frac{1}{27}.2^4=\frac{16}{27}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

KL:...

 
Đinh Quốc Tuấn
2 tháng 3 2019 lúc 11:48

vận dụng bất đẳng thức x^2+y^2+z^2 \(\ge\) (x+y+z)^2/3

kudo shinichi
2 tháng 3 2019 lúc 16:44

Áp dụng BĐT AM-GM ta có:

\(x^4+\frac{16}{81}+\frac{16}{81}+\frac{16}{81}\ge4.\sqrt[4]{x^4.\frac{16}{81}.\frac{16}{81}.\frac{16}{81}}=\frac{32}{27}x\)

Dấu " = " xảy  ra \(\Leftrightarrow x^4=\frac{16}{81}\Leftrightarrow x=\frac{2}{3}\)

Tương tự:

\(y^4+\frac{16}{81}+\frac{16}{81}+\frac{16}{81}\ge4.\sqrt[4]{y^4.\frac{16}{81}.\frac{16}{81}.\frac{16}{81}}=\frac{32}{27}y\)

\(z^4+\frac{16}{81}+\frac{16}{81}+\frac{16}{81}\ge4.\sqrt[4]{z^4.\frac{16}{81}.\frac{16}{81}.\frac{16}{81}}=\frac{32}{27}z\)

Dấu " = " xảy  ra \(\Leftrightarrow y^4=\frac{16}{81}\Leftrightarrow y=\frac{2}{3}\)

                              \(z^4=\frac{16}{81}\Leftrightarrow z=\frac{2}{3}\)

Cộng vế với vế của 3 BĐT trên ta có:

\(x^4+y^4+z^4+\frac{16}{81}.9\ge\frac{32}{27}\left(x+y+z\right)\)

\(\Leftrightarrow x^4+y^4+z^4\ge\frac{16}{27}\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)

Vậy Min \(x^4+y^4+z^4=\frac{16}{27}\)\(\Leftrightarrow x=y=z=\frac{2}{3}\)

 
nguyễn quốc hoàn
Xem chi tiết
kim phuc
Xem chi tiết
Đặng Hồng Phong
Xem chi tiết
Đặng Hồng Phong
Xem chi tiết
Nguyễn Hoàng Minh
10 tháng 12 2021 lúc 15:11

\(M=\left(x^2-2xy+y^2\right)+\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(x-y\right)^2+\left(x+\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\\ M_{min}=-\dfrac{1}{4}\Leftrightarrow x=y=-\dfrac{1}{2}\)

edogawa conan
Xem chi tiết
edogawa conan
1 tháng 3 2016 lúc 21:31

giúp với mình sắp nạp rồi