Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
đỗ Hoàng Gia HUy
Xem chi tiết
đỗ Hoàng Gia HUy
Xem chi tiết
vũ tiền châu
15 tháng 7 2017 lúc 21:00

tự làm đi

vũ tiền châu
17 tháng 7 2017 lúc 20:47

dùng bất đẳng thức trong tam giác 

vo thi my ngoc
Xem chi tiết
Lê Thị Thảo Linh
Xem chi tiết
Phạm Nguyễn Hoàng Lâm
Xem chi tiết
Kurumyy
16 tháng 6 2016 lúc 21:23

Khó quá!

nguyễn công huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
31 tháng 8 2023 lúc 14:42

1:

ΔOAB vuông tại O

=>AB^2=AO^2+BO^2

ΔBOC vuông tại O

=>BC^2=BO^2+CO^2

ΔAOD vuông tại O

=>AD^2=AO^2+DO^2

ΔDOC vuông tại O

=>DC^2=OC^2+OD^2

AB^2+BC^2+CD^2+DA^2

=OA^2+OB^2+OC^2+OD^2+OA^2+OB^2+OC^2+OD^2

=2(OA^2+OB^2+OC^2+OD^2)

2:

AB^2+CD^2

=OA^2+OB^2+OC^2+OD^2

=OA^2+OD^2+OB^2+OC^2

=AD^2+BC^2

Yoona
Xem chi tiết
Nguyen Bao Linh
28 tháng 1 2017 lúc 8:38

A B C D O

Chứng minh

Gọi O là giao điểm hai đường chéo AC và BD

Trong \(\Delta\)AOB có:

AB < AO + OB (1)

Trong \(\Delta\)OCD có:

CD < CO + OD (2)

Cộng từng vế của (1) và (2) ta có:

AB + CD < (AO + OC) + (BO + OD)

hay AB + CD < AC + BD (3)

mà AB + BD \(\le\) AC + CD (4)

Từ (3) và (4) suy ra AB < AC

Yoona
Xem chi tiết
Nguyen Bao Linh
3 tháng 2 2017 lúc 22:24

A B C D O

Giải

Gọi O là giao điểm của hai đường chéo AC và BD

Trong \(\Delta\)AOB có: AB < AO + OB (1)

Trong \(\Delta\)OCD có: CD < CO + OD (2)

Cộng từng vế của (1) và (2) ta có:

AB + CD < (AO + OC) + (BO + OD)

hay AB + CD < AC + BC (3)

mà AB + BD \(\le\) AC + CD (4)

Từ (3) và (4) suy ra AB < AC

tran hong hanh
Xem chi tiết