tìm các số nguyên n để phân số sau có giá trị nguyên là : n - 5/ n -3
tìm các số nguyên n để phân số sau có giá trị nguyên n-5/n-3
Để n−5/n−3 có giá trị nguyên thì:
n−5⋮n−3
⇔(n−3)−2⋮n−3
Vì n−3⋮n−3
⇒−2⋮n−3
⇔n−3 ∈Ư(2)= {±1;±2}
⇔n∈ {4;2;5;1}
Vậy để n−5/n−3 có giá trị nguyên thì: x∈ {1;2;4;5}
tìm các số nguyên n để phân số sau có giá trị nguyên n-5/n-3
n-5/n-3 nguyên
\(\Leftrightarrow\) n-5 = n-3-2 chia hết cho -3
\(\Leftrightarrow\)2 chia hết cho n-3
\(\Leftrightarrow\)n -- 3 thuộc Ư (2) = {-1;1;-2;2}
\(\Leftrightarrow\) n \(\in\) {2;4;1;5}
\(\dfrac{n-5}{n-3}\)nguyên
⇔ n-5 = n-3-2 ⋮-3
⇔2 ⋮ n-3
⇔n -- 3 ∈Ư (2) = {-1;1;-2;2}
⇔ n ∈ {2;4;1;5}
vậy n∈ {2;4;1;5}
\(\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) có giá trị nguyên thì \(n-3\) là ước của \(2\)
\(\Rightarrow n-3\in\) \(\left\{-2;-1;1;2\right\}\)
*) \(n-3=-2\)
\(n=1\) (nhận)
*) \(n-3=-1\)
\(n=2\) (nhận)
*) \(n-3=1\)
\(n=4\) (nhận)
*) \(n-3=2\)
\(n=5\) (nhận)
Vậy \(n=1;n=2;n=4;n=5\)
a) Với giá trị nào của n thì phân số sau có giá trị là số nguyên A= 3/n-5
b) Cho phân số n+9/n-6 ( n € Z , n > 6 ) . Tìm các gái trị của n để phân số có giá trị là số nguyên dương
a) Để \(A\inℤ\)
\(\Rightarrow3⋮n-5\)
\(\Rightarrow n-5\inƯ\left(3\right)\)
\(\Rightarrow n-5\in\left\{1;-1;3;-3\right\}\)
Lập bảng xét các trường hợp :
| \(n-1\) | \(1\) | \(3\) | \(-1\) | \(-3\) |
| \(n\) | \(2\) | \(4\) | \(0\) | \(-2\) |
Vậy \(n\in\left\{2;4;0\right\}\)
b) Để \(\frac{n+9}{n-6}\inℕ\Leftrightarrow n+9⋮n-6\)
\(\Rightarrow n-6+15⋮n-6\)
Vì \(n-6⋮n-6\)
\(\Rightarrow15⋮n-6\)
\(\Rightarrow n-6\inƯ\left(15\right)\)
\(\Rightarrow n-6\in\left\{\pm1;\pm3;\pm5;\pm15\right\}\)
Lập bảng xét các trường hợp ta có:
| \(n-6\) | \(1\) | \(-1\) | \(3\) | \(-3\) | \(5\) | \(-5\) | \(15\) | \(-15\) |
| \(n\) | \(7\) | \(5\) | \(9\) | \(3\) | \(11\) | \(1\) | \(21\) | \(-9\) |
Vậy \(n\in\left\{7;5;9;3;11;1;21;-9\right\}\)
a)Tìm tất cả các số nguyên n để phân số n+1/n-2 có giá trị là một số nguyên
b)
Tìm số nguyên n để phân số 4n+5/2n-1 có giá trị là một số nguyên
a, Để \(\dfrac{n+1}{n-2}\) có giá trị là một số nguyên thì n + 1 ⋮ n - 2
=> (n - 2) + 3 ⋮ n - 2
Vì (n - 2) ⋮ n - 2 nên 3 ⋮ n - 2
=> n - 2 ∈ Ư(3) ∈ {-3;-1;1;3}
=> n ∈ {-1;1;3;5}
b, Để \(\dfrac{4n+5}{2n-1}\) có giá trị là một số nguyên thì 4n + 5 ⋮ 2n - 1
=> (4n - 2) + 7 ⋮ 2n - 1
=> 2(2n - 1) + 7 ⋮ 2n - 1
Vì 2(2n - 1) ⋮ 2n -1 nên 7 ⋮ 2n - 1
=> 2n - 1 ∈ Ư(7) ∈ {-7;-1;1;7}
=> n ∈ {-3;0;1;4}
ta có :
\(\frac{n-5}{n-3}=\frac{n-3-2}{n-3}=1-\frac{2}{n-3}\text{ nguyên khi n-3 là ước của 2}\)
hay \(n-3\in\left\{-2;-1;1;2\right\}\text{ hay }n\in\left\{1,2,4,5\right\}\)
Tìm số nguyên n để phân số sau có giá trị là một số nguyên và tìm giá trị đó A = 3 n + 9 trên n - 4 B = 6n + 5 trên 2n - 1
Để A là số nguyên thì 3n+9⋮n-4
=>3n-12+21⋮n-4
=>21⋮n-4
=>n-4∈{1;-1;3;-3;7;-7;21;-21}
=>n∈{5;3;7;1;11;-3;25;-17}
Khi n=5 thì \(A=\frac{3\cdot5+9}{5-4}=\frac{15+9}{1}=24\)
Khi n=3 thì \(A=\frac{3\cdot3+9}{3-4}=\frac{9+9}{-1}=-18\)
Khi n=7 thì \(A=\frac{3\cdot7+9}{7-4}=\frac{21+9}{3}=\frac{30}{3}=10\)
Khi n=1 thì \(A=\frac{3\cdot1+9}{1-4}=\frac{12}{-3}=-4\)
Khi n=11 thì \(A=\frac{3\cdot11+9}{11-4}=\frac{33+9}{7}=\frac{42}{7}=6\)
Khi n=-3 thì \(A=\frac{3\cdot\left(-3\right)+9}{-3-4}=0\)
Khi n=25 thì \(A=\frac{3\cdot25+9}{25-4}=\frac{75+9}{21}=\frac{84}{21}=4\)
Khi n=-17 thì \(A=\frac{3\cdot\left(-17\right)+9}{-17-4}=\frac{-51+9}{-21}=\frac{-42}{-21}=2\)
Để B nguyên thì 6n+5⋮2n-1
=>6n-3+8⋮2n-1
=>8⋮2n-1
=>2n-1∈{1;-1}
=>2n∈{2;0}
=>n∈{1;0}
Khi n=1 thì \(B=\frac{6\cdot1+5}{2\cdot1-1}=\frac{11}{1}=11\)
Khi n=0 thì \(B=\frac{6\cdot0+5}{2\cdot0-1}=\frac{5}{-1}=-5\)
Để A là số nguyên thì 3n+9⋮n-4 =>3n-12+21⋮n-4 =>21⋮n-4 =>n-4∈{1;-1;3;-3;7;-7;21;-21} =>n∈{5;3;7;1;11;-3;25;-17} Khi n=5 thì A = 3 ⋅ 5 + 9 5 − 4 = 15 + 9 1 = 24 Khi n=3 thì A = 3 ⋅ 3 + 9 3 − 4 = 9 + 9 − 1 = − 18 Khi n=7 thì A = 3 ⋅ 7 + 9 7 − 4 = 21 + 9 3 = 30 3 = 10 Khi n=1 thì A = 3 ⋅ 1 + 9 1 − 4 = 12 − 3 = − 4 Khi n=11 thì A = 3 ⋅ 11 + 9 11 − 4 = 33 + 9 7 = 42 7 = 6 Khi n=-3 thì A = 3 ⋅ ( − 3 ) + 9 − 3 − 4 = 0 Khi n=25 thì A = 3 ⋅ 25 + 9 25 − 4 = 75 + 9 21 = 84 21 = 4 Khi n=-17 thì A = 3 ⋅ ( − 17 ) + 9 − 17 − 4 = − 51 + 9 − 21 = − 42 − 21 = 2 Để B nguyên thì 6n+5⋮2n-1 =>6n-3+8⋮2n-1 =>8⋮2n-1 =>2n-1∈{1;-1} =>2n∈{2;0} =>n∈{1;0} Khi n=1 thì B = 6 ⋅ 1 + 5 2 ⋅ 1 − 1 = 11 1 = 11 Khi n=0 thì B = 6 ⋅ 0 + 5 2 ⋅ 0 − 1 = 5 − 1 = − 5
tìm các số nguyên n để các phân số sau có giá trị là 1 số nguyên 2n+3/n+2
\(\frac{2n+3}{n+2}=\frac{2n+4-1}{n+2}=2-\frac{1}{n+2}\inℤ\)
mà \(n\inℤ\Rightarrow n+2\inƯ\left(1\right)=\left\{-1;1\right\}\Leftrightarrow n\in\left\{-3;-1\right\}\).
tìm số nguyên n để các Phân số sau có giá trị là số nguyên:
-3 phần n-1 4 phần 3n+1 n+3 phần 2n-1
a: Để A nguyên thì \(n-1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{2;0;4;-2\right\}\)
b: Để B nguyên thì \(3n+1\in\left\{1;4\right\}\)
hay \(n\in\left\{0;1\right\}\)
c: Để C nguyên thì \(n+3⋮2n-1\)
\(\Leftrightarrow2n+6⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{1;0;4;-3\right\}\)