Cho tam giác ABC có 3 góc nhọn, đường cao AH. Trên HC lấy điểm M. Từ M vẽ MN vuông góc với AC, từ C vẽ CD vuông góc với AM.
a. Chứng minh AHMN nội tiếpAH.
b. AH.MC=AC.MN
c.Chứng minh DA là tia phân giác của góc HDN
Cho tam giác ABC có 3 góc đều nhọn. vẽ AH vuông góc vói BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD Chứng minh CA=CD
2) Vẽ HM vuông góc với AC tại M; HN vuông góc với DC tại N . Chứng minh: HC là tia phân giác của góc MHN
3) Chứng minh HC là đường trung trực của MN
4) Xác định vị trí điểm H trên cạnh BC để AB//CD
giúp mình 2,3,4 với ạ
1: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
hay CA=CD
Cho tam giác ABC có 3 góc đều nhọn. vẽ AH vuông góc vói BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD
1) Chứng minh CA=CD
2) Vẽ HM vuông góc với AC tại M;HN vuông góc với DC tại N . Chứng minh: HC là tia phân giác của góc MHN
3) Chứng minh HC là đường trung trực của MN
4) Xác định vị trí điểm H trên cạnh BC để AB//CD
1: Xét ΔHAC vuông tại H và ΔHDC vuông tại H có
CH chung
HA=HD
Do đó: ΔHAC=ΔHDC
Suy ra: CA=CD
Cho tam giác ABC có 3 góc đều nhọn. vẽ AH vuông góc vói BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD
1) Chứng minh CA=CD
2) Vẽ HM vuông góc với AC tại M;HN vuông góc với DC tại N . Chứng minh: HC là tia phân giác của góc MHN
3) Chứng minh HC là đường trung trực của MN
4) Xác định vị trí điểm H trên cạnh BC để AB//CD
1: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
hay CA=CD
Cho tam giác ABC có 3 góc đều nhọn. vẽ AH vuông góc vói BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD
1) Chứng minh CA=CD
2) Vẽ HM vuông góc với AC tại M;HN vuông góc với DC tại N . Chứng minh: HC là tia phân giác của góc MHN
3) Chứng minh HC là đường trung trực của MN
4) Xác định vị trí điểm H trên cạnh BC để AB//CD
help 2,3,4 đi
Cho tam giác ABC có 3 góc đều nhọn. vẽ AH vuông góc vói BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD
1) Chứng minh CA=CD
2) Vẽ HM vuông góc với AC tại M;HN vuông góc với DC tại N . Chứng minh: HC là tia phân giác của góc MHN
3) Chứng minh HC là đường trung trực của MN
4) Xác định vị trí điểm H trên cạnh BC để AB//CD
1: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
hay CA=CD
Cho tam giác ABC có AB<AC. Đường cao AH. Trên đoạn HC lấy điểm D sao cho HD = HB
a. Chứng minh tam giác ABD là tam giác cân
b. Vẽ DE vuông góc AC (E thuộc AC), vẽ CM vuông góc với tia AD (góc AMC = 90 độ, M thuộc AD).Chứng minh 3 đường thẳng AH, ED, CM đồng quy.
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: Gọi K là giao của CM và AH
Xét ΔAKC có
AM,Ch là đường cao
AM cắt CH tại D
=>D là trực tâm
=>KD vuông góc AC
=>K,D,E thẳng hàng
=>AH,ED,CM đồng quy
a: Xét ΔABD có
AH vừa là đường cao, vừa là trung tuyến
=>ΔABD cân tại A
b: Gọi K là giao của CM và AH
Xét ΔAKC có
AM,Ch là đường cao
AM cắt CH tại D
=>D là trực tâm
=>KD vuông góc AC
=>K,D,E thẳng hàng
=>AH,ED,CM đồng quy
2. Cho tam giác ABC vuông tại A (AB<AC), vẽ đường cao AH. Trên đoạn HC lấy điểm M (M không trùng với H,C) từ M vẽ MN vuông góc AC tại N
a) C/M tam giác CMN đồng dạng với tam giác CAH và CA*CN=CH*CM
b) C/m tam giác ADE đồng dạng với tam giác ABC và góc ADE= góc ABC
c) Trên tia đối của tia AC lấy điểm D sao cho AD < AC. Vẽ AE vuông góc BD tại E. Chứng minh góc BEH = góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. Chứng minh rằng KC*IE = EF*IC
Cho tam giác ABC có 3 góc đều nhọn. vẽ AH vuông góc vói BC tại H . Trên tia đối của tia HA lấy điểm D sao cho HA=HD
1) Chứng minh CA=CD
2) Vẽ HM⊥AC tại M;HN⊥DC tại N.Chứng minh: HC là tia phân giác của góc
MHN
3) Chứng minh HC là đường trung trực của MN
4) Xác định vị trí điểm H trên cạnh BC để AB//CD
Giúp câu 3 và câu 4 với!!
1: Xét ΔCAD có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔCAD cân tại C
BÀI 1: Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) ∆ABE = ∆ADC b) Góc BMC = 120o
Bài 2: Cho tam giác ABC có ba góc nhọn, đường cao AH. ở miền ngoài của tam giác ABC ta vẽ các tam giác vuông cân ABE và ACF đều nhận A làm đỉnh góc vuông. Kẻ EM, FN cùng vuông góc với AH (M, N thuộc AH).
a) Chứng minh: EM + HC = NH.
b) Chứng minh: EN // FM.
Bài 3:Cho cạnh hình vuông ABCD có độ dài là 1. Trên các cạnh AB, AD lấy các điểm P, Q sao cho chu vi DAPQ bằng 2.
Chứng minh rằng : Góc PCQ = 45o
Bài 4:Cho tam giác vuông cân ABC (AB = AC), tia phân giác của các góc B và C cắt AC và AB lần lượt tại E và D.
a) Chứng minh rằng: BE = CD; AD = AE.
b) Gọi I là giao điểm của BE và CD. AI cắt BC ở M, chứng minh rằng các ∆MAB; MAC là tam giác vuông cân.
c) Từ A và D vẽ các đường thẳng vuông góc với BE, các đường thẳng này cắt BC lần lượt ở K và H. Chứng minh rằng KH = KC.
Bài 5: Cho tam giác cân ABC (AB = AC ). Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Các đường thẳng vuông góc với BC kẻ từ D và E cắt AB, AC lần lượt ở M, N. Chứng minh rằng:
a) DM = EN
b) Đường thẳng BC cắt MN tại trung điểm I của MN.
c) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC.