a: góc AHM+góc ANM=180 độ
=>AHMN nội tiếp
b: Xét ΔCHA vuông tại H và ΔCNM vuông tại N có
góc C chung
=>ΔCHA đồng dạng với ΔCNM
=>AH/NM=CA/CM
=>AH*CM=CA*NM
a: góc AHM+góc ANM=180 độ
=>AHMN nội tiếp
b: Xét ΔCHA vuông tại H và ΔCNM vuông tại N có
góc C chung
=>ΔCHA đồng dạng với ΔCNM
=>AH/NM=CA/CM
=>AH*CM=CA*NM
Cho tam giác ABC vuông tại A ( AB<AC ), đường cao AH. Trên đoạn thẳng HC lấy điểm D sao cho HD=HB, đường thẳng qua C vuông góc với AD tại E. Chứng minh:
a) Tứ giác AHEC nội tiếp.
b) CH là tia phân giác của góc ACE.
c) Biết AC=6 cm và góc ACB bằng 30 độ, tính diện tích hình giới hạn bởi các đoạn thẳng CA, CH và cung nhỏ AH.
Cho tam giác ABC có ba góc nhọn và AB>AC. Tam giác ABC nội tiếp đường tròn (O;R). Đường cao AH của tam giác ABC cắt đường tròn (O;R) tại điểm thứ hai là D. Kẻ DM vuông góc với AB tại M.
a) Chứng minh tứ giác BDHM nội tiếp đường tròn.
b) Chứng minh DA là tia phân giác của MDC
c) Gọi N là hình chiếu vuông góc của D lên đường thẳng AC, chứng minh ba điểm M, H, N thẳng hàng.
d) Chứng minh AB2 + AC2 + CD2 + BD2 = 8R2
cho đường tròn tâm O, đường kính BC, lấy điểm a trên cung bc sao cho AB<AC. Trên OC lấy điểm D, từ D kẻ đường thẳng vuông góc với BC cắt AC tại E.
a) chứng minh tứ giác ABDE nội tiếp
b) Chứng minh góc DAE = góc DBE
c) Đường cao AH của tam giác ABC cắt đường tròn tại F. Chứng minh: HF. DC = HC . ED
d) Chứng minh BC là tia phân giác của góc ABF
Cho tam giác ABC vuông ở A, đường cao AH. Trên HC lấy điểm D sao cho HB = HD, từ C kẻ Ce vuông góc với AD.
a. Chứng minh AEHC nội tiếp
b. Chứng minh tam giác HAE cân
c. Chứng minh CD phân giác góc ACE
Bài 1: cho tam giác ABC vuông tại A. đường cao AH. Biết HB=9cm, HC=16cm. Vẽ HM vuông góc với AB, HN vuông góc với AC. K là trung điểm của BC. chứng minh AK vuông góc với MN
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Cho BC=36cm. BH=4cm. chứng minh Tang góc B= 8 Tang góc C
giúp mk với ạ. mk cần gấp/ tks mn nhìu :3
Cho tam giác ABC vuông tại A, có AB < AC . Kẻ đường cao AH, trên đoạn HC lấy điểm D sao cho
HB = HD, từ C kẻ đường thẳng vuông góc với tia AD tại điểm E. chứng minh rằng:
a) tứ giác AHEC nội tiếp đường tròn.
b)CB là tia phân giác góc ACE.
c) HE^2 = HD.HC.
cho tam giác ABC nhọn nội tiếp đươgf tròn tâm o .đường cao AD cắt đường tròn tại điểm thứ 2 là M . Kẻ MN vuông góc với đường thẳng AB tại N
a) CM tứ giác MNBD nội tiếp và MA là tia phân giác của góc NMC
b) ND cắt AC tại E . Chứng minh ME vuông góc với AC (ai giúp mình phần b với)
cho tam giác abc có 3 góc nhọn nội tiếp đường tròn tâm o (ab<ac) và ah là đường cao của tam giác.gọi m,n lần lượt là hình chiếu vuông góc của h lên ab,ac.kẽ ne vuông góc với ah.đường thẳng vuông góc với ac kẻ từ c cắt tia ah tại d và ad cắt đường tròn tại f.i là giao điểm của cd và (o).cm:a)góc abc+góc acb= góc bic và tứ giác denc nội tiếp.b)am.ab=an.ac và tứ giác bfic là hình thang cân.c)tứ giác bmed nội tiếp
Cho tam giác ABC (AB<AC) có ba góc nhọn nội tiếp tronh đường tròn (O,R). Vẽ đường cao AH của tam giác ABC, đường kính AD của đường tròn (O). Gọi E,F là chân đường vuông góc kẻ từ C và B xuống đường thẳng AD. M là trung điểm của BC.
a) chứng minh các tứ giác ABHF và BMFO nội tiếp.
b)chứng minh HE//BD.
c) chứng minh SABC= AB.AC.BC trên 4R (SABC là diện tích tam giác ABC)