cho x+y+4=0
Tim max B=2(x^3+y^3)+3(x^2+y^2)+10xy
cho x,y thuộc R thỏa mãn x+y+4=0. tìm Max của A=2(x3+y3)+3(x2+y2)+10xy
Bài 1 :
a. Cho x + y = 4 và x^2 + y^2 = 10 . Tính x^3 + y^3
b . Cho x - y = 4 và x^2 + y^2 = 58 . Tính x^3 - y^3
Bài 2 :
Cho x + y = 10 . Tính giá trị của các biểu thức :
a. A = 5x^2 - 7x + 5y^2 - 7y + 10xy - 112
b. B = x^3 + y^3 - 3x^2 - 2y^2 + 2xy(x+y ) - 6xy - 5(x+y)
Thực hiện các phép chia:
a) \(\left( {4{x^3}{y^2} - 8{x^2}y + 10xy} \right):\left( {2xy} \right)\) b) \(\left( {7{x^4}{y^2} - 2{x^2}{y^2} - 5{x^3}{y^4}} \right):\left( {3{x^2}y} \right)\)
`a, (4x^3y^2 - 8x^2y + 10xy) : 2xy`
`= 2x^2y - 4x + 5`.
`b, 7x^4y^2 - 2x^2y^2 - 5x^3y^4 : 3x^2y`
`= 7/3 x^2y - 3/2y - 5/3xy^3`
cho số thực x,y thỏa mãn x+y+4=0.Tìm GTLN của biểu thức A=2(x^3+y^3)+3(x^2+y^2)+10xy
Phân tích thành nhân tử
\(x^4 +2x^3 +x^2\)
\(x^3 -x+3x^2 y+3xy^2 +y^3 -y\)
\(5x^2 -10xy+5y^2 -20z^2\)
a: =x^2(x^2+2x+1)
=x^2(x+1)^2
b: =x^3+3x^2y+3xy^2+y^3-x-y
=(x+y)^3-(x+y)
=(x+y)[(x+y)^2-1]
=(x+y)(x+y-1)(x+y+1)
c: =5(x^2-2xy+y^2-4z^2)
=5(x-y-2z)(x-y+2z)
1,cho x+y+4=0
tìm GTLN của A= 2(x3+y3)+3(x2+y2)+10xy
2,cho x4+y4-7=xy(3-2xy)
tìm GTNN của :M=xy
rút gọn
a) 10xy^2(x+y) / 15xy(x + y)^3
b) x^2 - xy -x + y / x^2 + xy - x- y
c) 3x^2 - 12x + 12 / x^4 - 8x
a,\(\dfrac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)
\(=\dfrac{2y}{3\left(x+y\right)^2}\)
b,\(\dfrac{x^2-xy-x+y}{x^2+xy-x-y}\)
\(=\dfrac{\left(x^2-x\right)+\left(-xy+y\right)}{\left(x^2-x\right)+\left(xy-y\right)}\)
\(=\dfrac{x\left(x-1\right)-y\left(x-1\right)}{x\left(x-1\right)+y\left(x-1\right)}\)
\(=\dfrac{\left(x-y\right)\left(x-1\right)}{\left(x+y\right)\left(x-1\right)}\)
\(=\dfrac{x-y}{x+y}\)
c,\(\dfrac{3x^2-12x+12}{x^4-8x}\)
\(=\dfrac{3\left(x^2-4x+4\right)}{x\left(x^3-2^3\right)}\)
\(=\dfrac{3\left(x-2\right)^2}{x\left[\left(x-2\right)\left(x^2+2x+4\right)\right]}\)
\(=\dfrac{3\left(x-2\right)}{x\left(x^2+2x+4\right)}\)
Phân tích thành nhân tử:
a, x^4+2x^3+x^2
b, x^3-x+3x^2y+y^3-y
c, 5x^2-10xy+ey^2-20z^2