Ta có B=\(2\left(x+y\right)\left(x^2-xy+y^2\right)+3x^2+3y^2+10xy\)
\(B=-8x^2+8xy-8y^2+3x^2+3y^2+10xy\)
\(-B=5x^2-18xy+5y^2>=\frac{5}{2}\left(x+y\right)^2-18\left(\frac{x+y}{2}\right)^2=40-72\)=-32
hay b>=32 dấu bằng xảy ra tự tính
Ta có B=\(2\left(x+y\right)\left(x^2-xy+y^2\right)+3x^2+3y^2+10xy\)
\(B=-8x^2+8xy-8y^2+3x^2+3y^2+10xy\)
\(-B=5x^2-18xy+5y^2>=\frac{5}{2}\left(x+y\right)^2-18\left(\frac{x+y}{2}\right)^2=40-72\)=-32
hay b>=32 dấu bằng xảy ra tự tính
cho x,y thuộc R thỏa mãn x+y+4=0. tìm Max của A=2(x3+y3)+3(x2+y2)+10xy
Bài 1 :
a. Cho x + y = 4 và x^2 + y^2 = 10 . Tính x^3 + y^3
b . Cho x - y = 4 và x^2 + y^2 = 58 . Tính x^3 - y^3
Bài 2 :
Cho x + y = 10 . Tính giá trị của các biểu thức :
a. A = 5x^2 - 7x + 5y^2 - 7y + 10xy - 112
b. B = x^3 + y^3 - 3x^2 - 2y^2 + 2xy(x+y ) - 6xy - 5(x+y)
cho số thực x,y thỏa mãn x+y+4=0.Tìm GTLN của biểu thức A=2(x^3+y^3)+3(x^2+y^2)+10xy
Phân tích thành nhân tử
\(x^4 +2x^3 +x^2\)
\(x^3 -x+3x^2 y+3xy^2 +y^3 -y\)
\(5x^2 -10xy+5y^2 -20z^2\)
1,cho x+y+4=0
tìm GTLN của A= 2(x3+y3)+3(x2+y2)+10xy
2,cho x4+y4-7=xy(3-2xy)
tìm GTNN của :M=xy
Phân tích thành nhân tử:
a, x^4+2x^3+x^2
b, x^3-x+3x^2y+y^3-y
c, 5x^2-10xy+ey^2-20z^2
cho x+y=5 tim max A=x^4+y^4-4(x^3+y^3)-20(x^2+y^2)-2x^2y^2+xy
1. Rút gọn biểu thức x(x-y)-y(x+y)+x^2+y^2
2. Phân tích đa thức thành nhân tử :
a) a^3-a^2x-ay^2+xy^2
b) 5x^2-4x+10xy
c) 12x-9--4x^2
d) 8x^3+12x^2y+6xy^2+y^3
e) 5x^2-4x+10xy-8y
3. Điền vào chỗ trống :
a) (1/2x-y)^2=1/4x^2-.....+y^2
Phân tích đa thức thành nhân tử
a) \(5x-y+ax-ay\)
b) \(a^3-a^2x-ay+xy\)
c) \(4x^2-y^2+4x+1\)
d) \(x^4+2x^3+x^2\)
e) \(5x^2-10xy+5y^2-5z^2\)