Cho M + 5x ² -xy- 3y ²= 8x ²- 2xy- y ² a) Tìm M b) c/m: M ≥ 0,∀ x, y
Tìm các số nguyên x,y sao cho
a,xy-5x-3y-28=0 b,x^2 y-5x-xy =0
Tìm đa thức M biết: M+5x2-2xy-3y2=8x2-2xy-y2. Chứng tỏ rằng: M\(\ge\)0 với \(\forall\)x,y.
\(M=8x^2-2xy-y^2-5x^2+2xy+3y^2=3x^2+2y^2>=0\forall x,y\)
phân tích thành nhân tử
b. x^2+2xy+y^2-16
c. 3x^2+5x-3xy-5y
d. 4x^2-6x^3y-2x^2+8x
e. x^2-4-2xy+y^2
k. x^2-y^2-z^2-2yz
m. 6xy+5x-5y-3x^2-3y^2
b)x2+2xy+y2-16=(x+y)2-42=(x+y+4)(x+y-4)
c)3x2+5x-3xy-5y=x(3x+5)-y(3x+5)=(3x+5)(x-y)
d)4x2-6x3y-2x2+8x=2x(2x-3x2y-x+4)
e)x2-4-2xy+y2=(x2-2xy+y2)-4=(x-y)2-22=(x-y-2)(x-y+2)
k)x2-y2-z2-2yz=x2-(y+z)2=(x-y-z)(x+y+z)
m)6xy+5x-5y-3x2-3y2=3(x2-2xy+y2)+5(x-y)=3(x-y)2+5(x-y)=(x-y)(3x-3y+5)
b. (x^2+2xy+y^2)-16 =(x+y)^2-16=(x+y+4)(x+y-4)
c1,tìm x,y số nguyên biết 2xy-x-y=2
c2,tìm đa thức M biết rằng M+(5x^2-2xy)=6x^2+9xy-y^2 tính giá trị của M khi x, y thỏa mãn (2x-5)^2018+(3y+4)^2<0 hoặc =0
Bài 3: Cho Q=4xy²+|5x-15|-(9-2x+4xy²)
a)Thu gọn Q
b)Tính Q khi x=3,y=20152016
c)Tìm x để Q=0
Bài 4: Tính giá trị tổng của đa thức M+N biết x-y=0
M=9x-9y+5ax+4bx-5ay-4by+36
N=10x(2x²+3y³)-10y(2x²+3y³)+64
Bài 5: Tính giá trị biểu thức
a) P=5x4-8x²y²+3y4-20y² với x²-y²=10
b) Q=x³+x²y-5x²-x²y-xy²+5xy+3(x+y)+2000
Bài 6: Tìm các cặp số nguyên dương (x;y) để biểu thức P nhận giá trị là số nguyên
\(P=\frac{3x+3y+5}{x+y}\)
Tìm tất cả các số nguyên x, y thõa mãn
a)(x-3)(2y+1)=7 b)xy+2-y=9 c)xy+2x=6-2xy
d)x-y=6-2xy e)5x-xy-y+-1
a. (x-3)(2y+1)=7
=>(x-3)(2y+1)=1.7=7.1
Ta có bảng sau
x-3 1 7
2y+1 7 1
x 4 10
y 3 0
Cho M + 5x2-2xy-3xy2=8x2-2xy-y2
Chứng tỏ M> hoặc = 0 với mọi x,y
( Bài 6: Phân tích thành nhân tử ( phối hợp các phương pháp )
5) 4x^5y^2 + 8x^4y^3 + 4x^3y^4 ;
9) 4x^5y^2 + 16x^4y^2 + -6x^3y^2 ;
13) -3x^4y + 6x^3y -3x^2y ;
17) 8x^3 - 8x^2y + 2xy^2 ;
21) (a^2 + 4) ^2 - 16a^2b^2 ;
25) 100a^2 - (a^2 + 25)^2 ;
29) 25a^2b^2 - 4x^2 + 4x - 1 ;
33) 1 - 2m + m^2 - x^2 - 4x - 4 ;
37) ax^2 + bx^2 + 2xy(a + b) + 2ay^2 + by^2 ;
41) 5a^2 - 5 ;
45) 9xy - 4a^2xy ;
49) -4 + 32a^3b^3 ;
53) -5x^3y^3 - 5x^3y^3 ;
57) ab(x - y)^3 + 8ab ;
61) x^2 + (a + b)xy + aby^2 ;
65) y^2 - (3b + 2a) xy + 6abx^2 ;
69) xy(a^2 + 2b^2) + ab( 2x^2 + y^2) ;
73) (xy + ab)^2 + (ay - bx)^2 ;
77) (xy - 3ab)^2 + (3ay + bx)^2 ;
5.
\(4x^5y^2+8x^4y^3+4x^3y^4=4x^3y^2(x^2+2xy+y^2)\)
\(=4x^3y^2(x+y)^2\)
9.
\(4x^5y^2+16x^4y^2-6x^3y^2=2x^3y^2(2x^2+4x-3)\)
13.
\(-3x^4y+6x^3y-3x^2y=-3x^2y(x^2-2x+1)=-3x^2y(x-1)^2\)
17.
\(8x^3-8x^2y+2xy^2=2x(4x^2-4xy+y^2)\)
\(=2x[(2x)^2-2.2x.y+y^2]=2x(2x-y)^2\)
21.
\((a^2+4)^2-16a^2b^2=(a^2+4)^2-(4ab)^2\)
\(=(a^2+4-4ab)(a^2+4+4ab)\)
25.
\(100a^2-(a^2+25)^2=(10a)^2-(a^2+25)^2\)
\(=(10a-a^2-25)(10a+a^2+25)\)
\(=-(a^2-10a+25)(a^2+10a+25)=-(a-5)^2(a+5)^2\)
29.
\(25a^2b^2-4x^2+4x-1=25a^2b^2-(4x^2-4x+1)\)
\(=(5ab)^2-(2x-1)^2=(5ab-2x+1)(5ab+2x-1)\)
33.
\(1-2m+m^2-x^2-4x-4=(m^2-2m+1)-(x^2+4x+4)\)
\(=(m-1)^2-(x+2)^2=[(m-1)-(x+2)][(m-1)+(x+2)]\)
\(=(m-x-3)(m+x+1)\)
37.
\(ax^2+bx^2+2xy(a+b)+ay^2+by^2\)
\(=x^2(a+b)+2xy(a+b)+y^2(a+b)\)
\(=(a+b)(x^2+2xy+y^2)=(a+b)(x+y)^2\)
41.
\(5a^2-5=5(a^2-1)=5(a^2-1^2)=5(a-1)(a+1)\)
1)tìm x ,y thuộc z , biết :
xy-3y +5x = 22
7y-5x+xy=24
2) cho x-y chia hết cho 7 ( x , y thuộc z )
a) 22x-y chia hết cho 7
b) 8x+ 20y chia hết cho 7
c) 11x+10y chia hết cho 7
d) 19x-12y chia hết cho 7