cho \(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5}\) và x+z=0 tìm y
Tìm x,y,z
\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\) và x + z = y
Tìm x, y , z
\(\frac{x+1}{3}=\frac{y-2}{5}=\frac{2z+14}{9}\) và x + z = y
Ta có: \(\frac{x+1}{3}=\frac{2z+14}{9}=\frac{2x+2}{6}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{x+1}{3}=\frac{2z+14}{9}=\frac{2x+2}{6}=\frac{2z+14+2x+2}{9+6}=\frac{2.\left(x+z\right)+16}{15}=\frac{2.y+16}{15}\)
\(=\frac{y-2}{5}\)
=> (2.y + 16).5 = (y - 2).15
=> 10y + 80 = 15y - 30
=> 80 + 30 = 15y - 10y
=> 110 = 5y
=> y = 110 : 5 = 22
Thay y = 22 vào đề bài ta có: \(\frac{x+1}{3}=\frac{22-2}{5}=4\)
=> x + 1 = 4.3 = 12
=> x = 12 - 1 = 11
Lại có: x + z = y
=> 11 + z = 22
=> z = 22 - 11 = 11
Vậy x = 11; y = 22; z = 11
Cho \(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5}\)v
và x + z = 0. vậy y = .........
cho \(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5}và\)x+z=0
Theo t/c dãy tỉ số = nhau:
\(\frac{9}{y}=\frac{x}{-2}=\frac{2x}{-4}=\frac{3-2z}{5}=\frac{2x-3+2z}{-4-5}=\frac{2.\left(x+z\right)-3}{-9}=\frac{0-3}{-9}=\frac{-3}{-9}=\frac{1}{3}\)
=> \(\frac{9}{y}=\frac{1}{3}\Rightarrow y=9.3=27\).
Tìm các dãy tỉ số bằng nhau:
a) \(\frac{x}{4}=\frac{y}{3}=\frac{3}{9}\)và x-3y+4z=62
b) \(\frac{x}{y}=\frac{7}{20};\frac{y}{z}=\frac{5}{8}\)và 2x+5y-2z=100
c) \(\frac{x}{y}=\frac{9}{7};\frac{y}{z}=\frac{7}{3}\)và x-y+z=(-15)
d) \(\frac{6}{11}x=\frac{9}{2}y=\frac{18}{5}z\) và -x+y+z=(-120)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{z}{9}=\dfrac{x-3y+4z}{4-3\cdot3+4\cdot9}=\dfrac{62}{31}=2\)
Do đó: x=8; y=6; z=18
b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta đc:
\(\dfrac{x}{7}=\dfrac{y}{20}=\dfrac{z}{32}=\dfrac{2x+5y-2z}{2\cdot7+5\cdot20-2\cdot32}=\dfrac{100}{50}=2\)
Do đó: x=14; y=40; z=64
c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y+z}{9-7+3}=\dfrac{-15}{5}=-3\)
DO đó: x=-27; y=-21; z=-9
Cho \(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5};x+z=0.\)Khi đó y=?
cho \(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5};x+z=0\)
khi dod y =.....?
\(\frac{x}{-2}=\frac{9}{y}=\frac{3-2\text{z}}{5}\Rightarrow\frac{-2\text{x}}{4}=\frac{9}{y}=\frac{3-2\text{z}}{5}=\frac{-2\text{x}+3-2\text{z}}{9}=\frac{-2\left(x+z\right)+3}{9}=\frac{1}{3}\Rightarrow\frac{9}{y}=\frac{1}{3}\Rightarrow y=27\)
Cho tam giác ABC. DTrên cạnh AB lấy các điểm D và E sao cho AD=BE. Qua D và E, vẽ các đường thẳng song song vời BC chúng cắt AC theo thứ tự ở M và N. Chứng minh rằng DM+EN=BC
Hướng dẫn: Qua N kẻ đường thẳng song song với AB
ai chữa đc bài này em sẽ cho mượn nick Bang Bang LV20, gồm 13 tank: Sát Thủ 4 , Người nhện 4, Gundam 3, Panda 3 , Iron man 3 , Pega3, Ngộ Không 3, Hulk 3, Dark Knight 3, Gost Ride 3, Pea 3, Tedy 3, Captan 2
Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
Cho \(\frac{x}{-2}=\frac{9}{y}=\frac{3-2z}{5}\) và \(x+z=0\). Khi đó y =______
1.Tìm x, y, z biết
a, \(\frac{x}{1}\) = \(\frac{y}{2}\) =\(\frac{z}{3}\) và 4x -3y + 2z = 36
b, x : y : z = 3 : 5 : (-2) và 5x - y + 37 = 124
c, 2x = 3y ; 5y = 2z và 3x - 2y + 5z = -30
d, \(\frac{x}{12}\) =\(\frac{y}{9}\)=\(\frac{z}{5}\) và x . y . z = 20
2. Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\) Tính giá trị biểu thức
A = \(\frac{x-y+z}{x+2y-z}\)
3. Tìm 2 số biết tỉ số của chúng bằng \(\frac{5}{7}\)và tổng các bình phương của chúng bằng 4736