Cho x+y=2
Chứng minh rằng xy bé thua hoặc bằng 1
Cho x+y=2 . Chứng minh rằng : xy bé hơn hoặc bằng 1
x+y=2
<=> x=2-y(1)
giả sử x*y≤1
<=>(2-y)y≤1
<=>y^2 - 2y +1≥0
<=> (y-1)^2≥0
<=>y≥1(2)
từ (1),(2)=> x*y≤1
ta có Áp dụng bđt cô si ta có
\(x^2+y^2\ge2xy\Rightarrow\left(x+y\right)^2\ge4xy\Rightarrow4\ge4xy\Rightarrow1\ge xy\) (ĐPCM)
dấu = xảy ra <=> x=y=1
Chứng minh rằng A = xy+ yz + xz/ xy^2 bé hơn hoặc bằng 1 biết /x/ <3=3 /y/ <= 3 /z/<=3
cho x-y=2 chứng minh xy bé hơn hoặc bằng 2
cho x^2+y^2+z^2 lớn hơn hoặc bằng 3 chứng minh x+y+z+xy+yz+xz bé hơn hoặc bằng 6
Giả thiết đề bài phải cho \(x^2+y^2+z^2\le3\) mới đúng.
Đặt \(m=x+y+z\) thì \(m^2=\left(x^2+y^2+z^2\right)+2\left(xy+yz+zx\right)\le3+2\left(xy+yz+zx\right)\)
\(\le3+2\left(x^2+y^2+z^2\right)\le3+3.2=9\)
\(\Rightarrow m^2\le9\Rightarrow-3\le m\le3\) (1)
Lại có ; \(\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)
\(\Rightarrow xy+yz+zx\le\frac{m^2}{3}\le\frac{9}{3}=3\) (2)
Từ (1) và (2) suy ra \(x+y+z+xy+yz+zx\le6\) (đpcm)
Cho x+ y = 2. Chứng minh rằng xy nhỏ hơn hoặc bằng 1
\(x+y=2\)
\(\Leftrightarrow x=2-y\left(1\right)\)
Giả sử: \(x.y\le1\)
\(\Leftrightarrow\left(2-y\right).y\le1\)
\(\Leftrightarrow y^2-2.y+1\ge0\),
\(\Leftrightarrow\left(y-1\right)^2\ge0\)
\(\Leftrightarrow y\ge1\)
Từ (1) và (2) suy ra:\(x.y\le1\)
Cho x + y = 2. Chứng minh rằng xy nhỏ hơn hoặc bằng 1
Vì x+y=2 -> x=2-y
ta có: xy=(2-y)y
=2y-y^2
=-y^2+2y-1+1
=-(y-1)^2+1
Vì (y-1)^2>=0 -> -(y-1)^2<=0(với mọi y)
-> -(y-1)^2+1 <=1(với mọi y)
Vậy xy<=1
ta có xy<=(x+y)^2/4
cm
<=> 4xy<=x^2+y^2+2xy
<=> (x^2+y^2-2xy)>=0
<=>(x-y)^2>=0 (dúng0)
áp dụng xy<=(x+y)^2/4=2^2/4=1
daứ = xảy ra là x=y=1
Cho x, y, z là các số lớn hơn hoặc bằng 1. Chứng minh rằng : 1/1+x mũ 2 + 1/1+y mũ 2 lớn hơn hoặc bằng 2/1+xy
\(\frac{1}{1+x^2}+\frac{1}{1+y^2}\ge\frac{2}{1+xy}\) ( 1 )
\(\Leftrightarrow\left(\frac{1}{1+x^2}-\frac{1}{1+xy}\right)+\left(\frac{1}{1+y^2}-\frac{1}{1+xy}\right)\ge0\)
\(\Leftrightarrow\frac{x\left(y-x\right)}{\left(1+x^2\right)\left(1+xy\right)}+\frac{y\left(x-y\right)}{\left(1+xy^2\right)\left(1+xy\right)}\ge0\)
\(\Leftrightarrow\frac{\left(y-x\right)^2\left(xy-1\right)}{\left(1+x^2\right)\left(1+y^2\right)\left(1+xy\right)}\ge0\) ( 2 )
\(\Rightarrow\)Bất đẳng thức ( 2 ) \(\Rightarrow\) Bất đẳng thức ( 1 )
( Dấu " = " xảy ra khi x = y )
Chúc bạn học tốt !!!
Cho x + y = 2 . Chứng minh rằng x.y bé hơn hoặc bằng 1
Chứng minh rằng : |a|-|b| bé thua hoặc bằng |a-b|