x+y=2
<=> x=2-y(1)
giả sử x*y≤1
<=>(2-y)y≤1
<=>y^2 - 2y +1≥0
<=> (y-1)^2≥0
<=>y≥1(2)
từ (1),(2)=> x*y≤1
Đúng nha !
Ta có:
\(\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow x^2+2xy+y^2\ge4xy\)
\(\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{2^2}{4}=1\)
Dấu \(=\)khi \(x=y=1\).