Cho ΔABC∽ΔMNP. Biết AB + AC = 10 cm, MN = 6cm, NP = 9cm và PM = 9cm. Chu vi của tam giác ABC là:
Cho ∆ABC với AB= 6cm; AC= 9cm; BC= 12cm và ∆MNP với MN= 4cm; MP= 6cm; NP= 8cm.a)Chứng minh rằng tam giác ABC đồng dạng với tam giác MNP .b)Tính tỉ số chu vi của hai tam giác.
Cíuuuuuuuuuuuuuuuuu
Cho ΔABC = ΔMNP và ΔABC = ΔGHK. Biết MN = 7cm, GK = 9cm, 3AC = 2BC. Chỉ ra các cạnh bằng nhau của ba tam giác trên. Tính chu vi của mỗi tam giác.
Yêu cầu: Giải chi tiết
GK=9cm
nên AC=9cm
BC=13,5cm
MN=7cm
nên AB=7cm
\(C_{ABC}=C_{MNP}=C_{GHK}=29,5\left(cm\right)\)
Cho tam giác ABC có AB=3cm,BC=5cm,AC=6cm và tam giác MNP có MN=9cm,NP=4,5cm,PM=7,5cm.
CMR: tam giác ABC∼tam giác NPM
Giups mk vs ạ ai nhanh mk tick nha :>
Xét ΔABC và ΔNPM có
\(\dfrac{AB}{NP}=\dfrac{AC}{NM}=\dfrac{BC}{PM}\)
Do đó: ΔABC∼ΔNPM
Cho ΔABC có AB = 4cm, BC = 6cm, AC = 5cm. ΔMNP có MN = 3cm, NP = 2,5cm, PM = 2cm thì tỉ lệ S M N P S A B C bằng bao nhiều?
A. 1 3
B. 1 4
C. 1 8
D. 1
Ta có:
M N B C = 3 6 = 1 2 , P N C A = 2 , 5 5 = 1 2 , P M A B = 2 4 = 1 2 ⇒ M N B C = P N C A = P M A B = 1 2
Vậy ΔPMN ~ ΔABC (c - c - c)
Suy ra tỉ số đồng dạng k của hai tam giác là k = M N B C = 1 2
⇒ S M N P S A B C = k 2 = ( 1 2 ) 2 = 1 4
Đáp án: B
Cho Δ A B C = Δ M N P . Biết A B = 5 c m , M P = 7 c m và chu vi của tam giác ABC bằng 22 cm. Tính các cạnh còn lại của mỗi tam giác?
A. N P = B C = 9 c m
B. N P = B C = 11 c m
C. N P = B C = 10 c m
D. N P = 9 c m ; B C = 10 c m
Cho ΔABC có AB = 9cm , AC = 12cm , BC = 15cm.
a) Chứng minh ΔABC vuông tại A.
b)Tính các góc B ,C và đường AH của tam giác đó.
c)Gọi M là đường trung tuyến của tam giác ABC . Tính chu vi và diện tích của tam giác AHM
Tam giác \(ABC\) có độ dài \(AB = 4cm,AC = 6cm,BC = 9cm.\)Tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\) và có chu vi bằng 66,5 cm. Hãy tính độ dài các cạnh của tam giác \(A'B'C'\).
Vì tam giác \(ABC\) đồng dạng với tam giác \(A'B'C'\) nên tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\). Do đó, \(\frac{{A'B'}}{{AB}} = \frac{{B'C'}}{{BC}} = \frac{{A'C'}}{{AC}}\) (các cặp cạnh tương ứng có cùng tỉ lệ)
Thay số, \(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6}\). Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{{A'B'}}{4} = \frac{{B'C'}}{9} = \frac{{A'C'}}{6} = \frac{{A'B' + B'C' + A'C'}}{{4 + 6 + 9}} = \frac{{66,5}}{{19}} = 3,5\)
Ta có:
\(\left\{ \begin{array}{l}\frac{{A'B'}}{4} = 3,5 \Rightarrow A'B' = 3,5.4 = 14\\\frac{{A'C'}}{6} = 3,5 \Rightarrow A'C' = 3,5.6 = 21\\\frac{{B'C'}}{9} = 3,5 \Rightarrow B'C' = 3,5.9 = 31,5\end{array} \right.\)
Vậy \(A'B' = 14cm,A'C' = 21cm,B'C' = 31,5cm\).
Cho hình tam giác ABC biết tổng chiều dài cạnh AB và BC là 9cm, Tổng chiều dài cạnh BC và AC là 5cm, Tổng chiều dài cạnh AC và AB là 6cm tính chu vi hình tam giác đó.
Cho ΔABC và AB=6cm,AC=9cm; BC=12cm và ΔFDE có DE=24cm;EF= 18cm;DF=12 cm
a) chứng minh rằng: AB.EF=AC.DF b)tính tỉ số chu vi của 2 tam giác đó
a) Ta có:
\(\dfrac{AB}{DF}=\dfrac{6}{12}=\dfrac{1}{2}\)
\(\dfrac{AC}{EF}=\dfrac{9}{18}=\dfrac{1}{2}\)
\(\dfrac{BC}{DE}=\dfrac{12}{24}=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{AB}{DF}=\dfrac{AC}{EF}=\dfrac{BC}{DE}=\dfrac{1}{2}\)
Xét \(\Delta ABC\) và \(\Delta FDE\) có:
\(\dfrac{AB}{DF}=\dfrac{AC}{EF}=\dfrac{BC}{DE}\) (cmt)
\(\Rightarrow\Delta ABC\sim\Delta FDE\) (c-g-c)
Do \(\dfrac{AB}{DF}=\dfrac{AC}{EF}\) (cmt)
\(\Rightarrow AB.EF=AC.DF\)
b) Chu vi \(\Delta ABC\)
\(P_1=AB+AC+BC=6+9+12=27\left(cm\right)\)
Chu vi \(\Delta FDE\):
\(P_2=DF+EF+DE=12+18+24=54\left(cm\right)\)
Tỉ số chu vi của chúng:
\(\dfrac{P_1}{P_2}=\dfrac{27}{54}=\dfrac{1}{2}\)
Cách 2 (không khuyến khích làm theo cách này):
a) Ta có:
AB . EF = 6 . 18 = 108 (cm)
AC . DF = 9 . 12 = 108 (cm)
\(\Rightarrow AB.EF=AC.DF=108\left(cm\right)\)