So sánh
\(\left(\frac{1}{6}\right)^{10}\)và \(\left(\frac{1}{2}\right)^{50}\)
So sánh
\(a,\left(-5\right)^{30}\&\left(-3\right)^{50}\)
\(b,\left(\frac{1}{16}\right)^{10}\&\left(\frac{1}{2}\right)^{50}\)
a)
Vì 3<5
\(\Rightarrow3^{30}< 5^{30}\)
\(\Rightarrow\left(-3\right)^{30}< \left(-5\right)^{30}\)
b)
Ta có
\(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^4\right]^{10}.\left(\frac{1}{2}\right)^{10}\)
\(=\left(\frac{1}{16}\right)^{10}.\left(\frac{1}{2}\right)^{10}\)
Ta có
\(\left(\frac{1}{2}\right)^{10}< 1\)
\(\Leftrightarrow\left(\frac{1}{16}\right)^{10}.\left(\frac{1}{2}\right)^{10}< \left(\frac{1}{16}\right)^{10}\)
\(\Leftrightarrow\left(\frac{1}{2}\right)^{50}< \left(\frac{1}{16}\right)^{10}\)
ta có :\(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)là 2 lũy thừa bậc chẵn nên :\(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)
từ trên suy ra (-5)^30<(-3)^50
b) Ta có:\(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2^5}\right)^{10}=\left(\frac{1}{32}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
ta có :\(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)là 2 lũy thừa bậc chẵn nên :\(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)
từ trên suy ra (-5)^30<(-3)^50
b) Ta có:\(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2^5}\right)^{10}=\left(\frac{1}{32}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{2}\right)^{50}< \left(\frac{1}{16}\right)^{10}\)
So sánh
\(\left(\frac{1}{16}\right)^{10}va\left(\frac{1}{2}\right)^{50}\)
Cách1:Ta có:\(\left(\frac{1}{2}\right)^{50}< \left(\frac{1}{2}\right)^{40}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{16}\right)^{10}\)
Vậy..................
Cách 2:Ta có:\(\left(\frac{1}{16}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{2}\right)^{50}\)
Vậy......................
\(\left(\frac{1}{16}\right)^{10}=\left(\frac{1}{2^4}\right)^{10}=\frac{1^{10}}{2^{40}}=\frac{1}{2^{40}}\)
\(\left(\frac{1}{2}\right)^{50}=\frac{1^{50}}{2^{50}}=\frac{1}{2^{50}}\)
Do 250 > 240 => \(\frac{1}{2^{40}}>\frac{1}{2^{50}}\)
=> \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{16}\right)^{10}=\left(\left(\frac{1}{2}\right)^4\right)^{10}=\left(\frac{1}{2}\right)^{40}\)
Mà \(\left(\frac{1}{2}\right)^{40}>\left(\frac{1}{2}\right)^{50}\)Vì \(2^{40}< 2^{50}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
So sánh
\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ai nhanh mình tick
Vì\(\left(\frac{1}{16}\right)^{10}\)= \(\left[\left(\frac{1}{2}\right)^4\right]^{10}\)= \(\left(\frac{1}{2}\right)^{40}\)
Mà 40<50 =>\(\left(\frac{1}{2}\right)^{40}\)< \(\left(\frac{1}{2}\right)^{50}\)hay \(\left(\frac{1}{16}\right)^{10}\)< \(\left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}\)<\(\left(\frac{1}{2}\right)^{50}\)
Học giỏi!^^ (đúng thì k cho mik nhé,cảm ơn!)
\(\left(\frac{1}{2}\right)^{50}=\left(\left(\frac{1}{2}\right)^5\right)^{10}=\left(\frac{1}{32}\right)^{10}\)
Ta có\(\frac{1}{16}>\frac{1}{32}\)nên\(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)hay\(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Ta có:
\(16^{10}=\left(2^4\right)^{10}=2^{4\cdot10}=2^{40}< 2^{50}\)
=>\(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
Vậy ......
So sánh các lũy thừa sau
a, \(\left(\frac{1}{16}\right)^{10}va\left(\frac{1}{2}\right)^{50}\)
b, 9920 và 999910
a, Ta có :
\(\left(\frac{1}{2}\right)^{50}=\left(\left(\frac{1}{2}\right)^5\right)^{10}=\left(\frac{1}{32}\right)^{10}\)
bạn so sánh nha :)
b,
T/c : \(99^{20}=\left(\left(99\right)^2\right)^{10}=9801^{10}\)
tiếp đây thì bạn tự làm nha có gì k hiểu ibx mk
Bài 1 : So sánh
\(\left(\frac{1}{10}\right)^{15}\) và \(\left(\frac{3}{10}\right)^{20}\)
Bài 2 : So sánh
A = \(\left(\frac{13^{15}+1}{13^{16}+1}\right)\) và B = \(\left(\frac{13^{16}+1}{13^{17}+1}\right)\)
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
Cho \(P=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\). So sánh P với \(\frac{1}{2}\)
\(P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)
\(P=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
\(P=\frac{\left(1.2.3...49\right)\left(3.4.5...51\right)}{\left(2.3.4...50\right)\left(2.3.4...50\right)}\)
\(P=\frac{1.51}{50.2}\)
\(P=\frac{51}{100}>\frac{1}{2}\)
Kết luận: \(P>\frac{1}{2}\)
So sánh:
\(\left(\frac{1}{16}\right)^{50}\) và\(\left(\frac{1}{2}\right)^{60}\)
Ta có:
\(\left(\frac{1}{16}\right)^{50}=\left[\left(\frac{1}{2}\right)^4\right]^{50}=\left(\frac{1}{2}\right)^{200}=\frac{1^{200}}{2^{200}}=\frac{1}{2^{200}}\)
\(\left(\frac{1}{2}\right)^{60}=\frac{1^{60}}{2^{60}}=\frac{1}{2^{60}}\)
Vì \(2^{200}>2^{60}\Rightarrow\frac{1}{2^{200}}< \frac{1}{2^{60}}\Rightarrow\left(\frac{1}{16}\right)^{50}< \left(\frac{1}{2}\right)^{60}\)
Ta có:
\(\left(\frac{1}{16}\right)^{50}=\left(\frac{1}{2}\right)^{4.50}=\left(\frac{1}{2}\right)^{200}\)
\(\Rightarrow\left(\frac{1}{2}\right)^{500}>\left(\frac{1}{2}\right)^{60}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{50}>\left(\frac{1}{2}\right)^{60}\)
\(\left(\frac{1}{16}\right)^{50}=\left[\left(\frac{1}{2}\right)^4\right]^{50}=\left(\frac{1}{2}\right)^{200}\)
Vì \(\frac{1}{2}=\frac{1}{2}\) mà \(200>60\)
=> \(\left(\frac{1}{2}\right)^{200}>\left(\frac{1}{2}\right)^{60}\)
=>\(\left(\frac{1}{16}\right)^{50}>\left(\frac{1}{2}\right)^{60}\)
Cho P= \(\left(1-\frac{1}{2^2}\right)\)\(.\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{50^2}\right)\). So sánh P vs \(\frac{1}{2}\)
\(P=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
\(\Rightarrow P=\left(\frac{4}{4}-\frac{1}{4}\right)\left(\frac{9}{9}-\frac{1}{9}\right)\left(\frac{16}{16}-\frac{1}{16}\right)...\left(\frac{2500}{2500}-\frac{1}{2500}\right)\)
\(\Rightarrow P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{2499}{2500}\)
\(\Rightarrow P=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
\(\Rightarrow P=\frac{\left(1.2.3...49\right)\left(3.4.5...51\right)}{\left(2.3.4...50\right)\left(2.3.4...50\right)}\)
\(\Rightarrow P=\frac{51}{50.2}=\frac{51}{100}>\frac{50}{100}=\frac{1}{2}\)
Vậy \(P>\frac{1}{2}\)
Ta có:
\(P=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right).....\left(1-\frac{1}{50^2}\right)\)
\(P=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right).....\left(1-\frac{1}{2500}\right)\)
\(P=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}.....\frac{2499}{2500}\)
\(P=\frac{3.8.15.....2499}{4.9.16.....2500}\)
Tới chỗ này rồi tiếp tục rút gọn
Kết quả cuối cùng là: \(P>\frac{1}{2}\)
Xin lỗi nha, tớ ko có giỏi ở phần rút gọn.
1. tính A= \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}\)
2. tính B= \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.\frac{4}{10}...\frac{30}{62}.\frac{31}{64}\)
3. So sánh C= \(\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{20}\right)\)với \(\frac{1}{21}\)
4. So sánh D= \(\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{100}\right)\)với \(\frac{11}{19}\)
\(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}.....\frac{899}{30^2}\)
\(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}.....\frac{29.31}{30.30}=\frac{1.2.3.....29}{2.3.4.....30}.\frac{3.4.5.....31}{2.3.4.....30}\)
\(=\frac{1}{2}.\frac{31}{30}=\frac{31}{60}\)